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ABSTRACT

The correct strategy for monitoring and assessing marine Renewable Energy Sources (RESs) is of great
importance for local/national sustainable development. To achieve this goal, it is necessary to measure in
the most precise possible manner the local/regional RESs potential. This is especially true for Offshore
Wind (OW) energy potential, since the most precise techniques are long and expensive, and are not able
to assess the RESs potential of large areas. Today, Remote Sensing (RS) satellites can be considered the
most important land and marine observation tools. The RS tools can be used to identify the interested
areas for future OW energy converters installations in large and small-scale areas. In this study, the OW
energy potential has been analysed by means of a 40 years wind speed data from the European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis dataset of the Samothraki island surrounding
area in the Mediterranean Sea. The OW speed potential has been analysed by means of monthly data
from ECMWF Interim reanalysis (ERA-Interim) datasets using the Network Common Data Form (NetCDF)
format. Automatically, analyses have been carried out using the Region Of Interest (ROI) tool and
Geographical Information System (GIS) software in order to extract information about the OW speed
assessment of the Samothraki island area. The primary results of this study show that the southwest area
of Samothraki island has good potential for future OW farms installation (bottom fixed and floating
version) in near and offshore areas. This study shows the OW energy potential per location, as well as the
trend of OW speed, which has changed over the past 40 years in the Mediterranean Sea.

© 2021 Published by Elsevier Ltd.

1. Introduction

avoid, for instance, an unbridled rise in energy prices due to
geopolitical issues as the two oil crises of 1973 and 1980 [3]. To

The current forecasts indicate a rapid growth of the GHG
(Greenhouse Gases) emissions in the world [1], which has very
significant effects on climate change and the environment [2]. Also,
concerns of the human societies about energy security issues in
industrialized countries should not be forgotten either. Indeed,
energy self-sufficiency is central in the political agenda in order to
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address these acute problems, countries around the world face
severe energy and environmental challenges and expanding the
use of different Renewable Energy Sources (RESs) can be a partic-
ular solution to overcome the current situation. Wind energy is one
of the safest and most well-known types of RESs.

Wind energy can be considered as an environmentally friendly
and cost-effective source, which can help to solve problems related
to environmental pollution, such as reducing the emissions of CO»,
SOyx and NOy [4]. In recent years, the construction and design cost of
wind turbines has decreased significantly due to the significant
growth of the new technologies. This has attracted attention for
further use of wind energy to reduce air pollution and energy se-
curity. This is especially true in the countries that are heavily
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List of abbreviations

ACF Auto Correlation Function

ASCII American Standard Code for Information Interchange

DOE Design of Experiments

ECMWEF  European Centre for Medium-Range Weather
Forecasts

ECs European Countries

ERA ECMWEF Interim reanalysis

ERA-5 ECMWEF fifth-generation global atmospheric
reanalysis

GHG Greenhouse Gases

GIS Geographical Information System

GRIB GRIdded Binary or General Regularly-distributed
Information in Binary form

JRA-55  Japanese 55-year Reanalysis

LiDAR Light Detection and Ranging

MERRA-2 Modern-Era Retrospective analysis for Research and
Applications, Version-2

NetCDF  Network Common Data Form

NCEP National Centers for Environmental Prediction
NCAR National Center for Atmospheric Research
NARR North American Regional Reanalysis

NASA The National Aeronautics and Space Administration
ow Offshore Wind

PACF Partial Autocorrelation Function

RS Remote Sensing

ROI Region Of Interest

RESs Renewable Energy Sources

SODAR  SOnic Detection And Ranging

SAR Synthetic Aperture Radar

WEC Wave Energy Converter

WTG Wind Turbine Generator

dependent on imported fossil fuels, such as Greece.

Evaluating the wind energy potential should take precedence
over the utilization of sources in wind farm construction projects
[5]. Therefore, identifying and evaluating suitable site locations for
a successful wind farm installation is very important and necessary
[5]. Indeed, a few meters per second (m/s) difference of the wind
speed potential can make the difference from a suitable and an
unsuitable site location for a wind farm. There are different criteria
for selecting optimal locations for RESs plants, especially for OW
(Offshore Wind) farms site selection [6]. In order to optimally
identify suitable locations, many parameters of OW must be eval-
uated, for example, wind speed, wind direction, wind shear, wind
power density [6]. Therefore, local data collected by measuring
devices must be used to evaluate suitable locations. Wind data
collection is usually done near the shore and/or offshore using wind
towers or buoys for a short period. Although such data are very
valuable and highly accurate, those cannot be considered as
representative for large sea areas, because they only have the ability
to measure the wind speed at the point where they are installed.
Nevertheless, these devices are very expensive and they also need
to be installed on-site for more than a year and thus are very time
consuming [7]. In this regard, basic, fast and cost-free measurement
methods could help to identify unobserved areas with suitable
potential and can reduce the overall OW farm construction project
cost. There are many different tools and techniques for wind energy
potential assessment, analysis, detection and reporting, for
instance, cup anemometers, SOnic Detection And Ranging (SODAR)
[8], Light Detection And Ranging (LiDAR) [9], Synthetic Aperture
Radar (SAR) satellite data [10], numerical simulation and reanalysis
dataset [11,12].

The ERA (ECMWEF Interim reanalysis)-Interim reanalysis dataset
has been designed and developed by the European Center for
Medium-Range Weather Forecast (ECMWF). The ECMWEF uses
predicted models and data capture techniques, including (4D-Var)
analysis with a 12-h analysis window. ERA-Interim is an ongoing
project that includes a large dataset of marine and atmospheric
parameters such as wind speed. In ECMWEF dataset, the wind speed
at 10 m standard height is available from 1979 to present time. The
data cover a spatial resolution (approximately 80 km) of
0.75°—0.75° and a time resolution of 3-hourly time steps (00:00,
03:00, 06:00, 12:00) intervals for each day per month [13].

These types of reanalysis dataset can be used to research various
parameters of the RESs field. It is quite clear that the clarity of data
is the main factor in measuring RESs potential and allows for more
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appropriate and accurate results [14]. Recent studies shows the
widespread use of the “reanalysis” dataset for long-term analysis
focusing on monthly and annual average production values [15]. It
should be noted that the reanalysis dataset is made by merging
several global climate-forecasting models that gather their data
observations from a wide range of the sources in different regions,
including surface stations, cub anemometers, buoys and balloons,
aircraft, ships and satellites. This feature made this type of dataset
very accurate in wind speed measuring even in small areas [16,17].
For example, wind speed, wave height, wavelength, tidal, thermal
and ocean water depth can be measured using this kind of dataset.
Table 1 shows the reanalysis source available to the present time.

There are five main factors that can increase the ERA-Interim
dataset popularity in universities, industries and companies, a)
the reanalysis products include many parameters, such as wind
speed and wave height, b) the data available from 1979 (long-term
historical dataset was available) [18], ¢) the reanalyses dataset are
generally free, open-source and supported by unlimited policy, d)
the reanalysis products received from the global observation sys-
tem and made up by different observations tools to cover a large
area of all world [19], of course it should be noted that wind ob-
servations are strongly influenced by local conditions, such as local
topography and natural and human elevations. Therefore, it is
natural that it does not show the correct values in these conditions,
but it has shown a very good ability to measure wind speed in large
areas [17]; e) Reanalysis dataset do not have gaps because they are
fed using data collected from large number of sources [20].

Wind speed estimation by means of the different reanalysis
dataset has been used more often every day, as proved by several
studies of the ocean and sea that have been conducted, such as
Sweden [19,21], Djibouti [22], Germany [23], Black Sea [24], Danish
part of the North Sea [25], East China Sea [26], the Latin American
and European coastal environments [27]. Onea et al. [28], provides
a nearshore wind potential analysis in the vicinity of the Mediter-
ranean Sea using 15-year long RS (Remote Sensing) data from
ECMWEF and the National Centers for Environmental Prediction
(NCEP) dataset and presented two numerical models. Then, the
wind velocity at 10 m height was evaluated knowing the wind
velocity at 80 m height concluding that interesting wind energy
conditions exist in the northern and southern parts of the Medi-
terranean Sea.

Rusu and Onea [27], using a reanalysis database covering 17
years, provided a comprehensive picture of the wind and wave
energy in Latin America and the European coastlines. Firstly, the
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Table 1
List of the global reanalysis datasets available to present time.
Source Name Start to Resolution Formats
Record
ECMWF ERA-Interim 1979 0.75° x 0.75° x NetCDF (Network Common Data Form), GRIB (GRIdded Binary
60 lev 0.1 hPA top or General Regularly-distributed Information in Binary form)
ECMWF ERA-5 (ECMWF fifth-generation global 1979  ~31km, 137 NetCDF, GRIB
atmospheric reanalysis) levels to 1 Pa
Japanese Meteorological JRA-55 (Japanese 55-year Reanalysis) 1957 T319 x 60 levels, GRIB
Agency 0.1 hPA top
NARR (North American NCEP (National Centers for Environmental 1979 32 km GRIB
Regional Reanalysis) Prediction) NARR
NCEP, DOE NCEP Reanalysis (R2) 1979 2.5° x 2.5°28 NetCDF, GRIB
levels 3 hPA top
NCEP, NCAR (National Center NCEP-NCAR (R1) 1948 25°x25°3 NetCDF, GRIB
for Atmospheric Research) hPA top
NASA (The National MERRA-2 (Modern-Era Retrospective 1980 ~56 km x 70 km NetCDF, GRIB

Aeronautics and Space
Administration)

analysis for Research and Applications,
Version-2)

most interesting sites are selected, and then, the performance of
five different Wind Turbine Generators (WTGs) and Wave Energy
Converter (WECs) are investigated. By looking at most of the
studies focused on the wind energy potential analysis in the
Mediterranean Sea [29,30], it is possible to split them in two main
categories, i) analysis on marine RESs mapping, and ii) evaluation of
the performance corresponding to bottom and floating WTGs [31].

The assessment of feasible location for OW installation is
particularly relevant for islands. Due to their remoteness from the
mainland, islands are heavily dependent on fossil fuels for meeting
their needs and are thus dependent on importing fuels and many
other goods at high prices [32]. Most of these islands, due to their
location in the open sea and ocean areas, have excellent conditions
with suitable climatic potential for the installation of energy con-
verters to achieve energy self-sufficiency [33].

Several methods have been suggested for the self-healing of
small islands around the world: Azores [34], Maldives [35], Faroe
Islands [36], El Hierro [37], Gran Canaria [38], Ireland [39], Sri Lanka
[40], Taiwan [41], New Zealand and Madagascar [42,43], New
Guinea and Tasmania [44]. Given that many of these islands are
geographically located in developed or developing countries, this
causes them to be directly exposed to international oil markets
fluctuations and to suffer from a very fragile, small scale local
economy [45]. However, more than 85,000 islands can be found
around the world, of which approximately 13% are inhabited and
have a population of about 740 million people [33,46]. Islands
belonging to developing countries have four distinct characteris-
tics, a) severe dependence on imported fossil fuels, b) power plants
used to generate electricity, c) high operating and maintenance
costs in the entire energy sector, d) high local RESs potential [45].

The scope of this study is to analyse the OW energy potential of
the Samothraki island to evaluate the possibility for the OW farms
development by means of ERA-Interim reanalysis dataset. The
Mediterranean islands represent perfect areas to assess, detect,
report and analyse OW potential by means of reanalysis datasets.
The Samothraki island will largely benefit from the adoption of the
OW farms since it mostly relies on fossil fuels, but given their
geographical location, they have the potential to use RESs to meet
their energy needs. The present study aims at assessing the OW
energy potential in the Samothraki island by means of a method-
ology, applicable both near and offshore, based on ERA-Interim
from ECMWEF reanalysis dataset. In this case, the Region Of Inter-
est (ROI) tool enables to improve results from automatic detection
and analysing OW speed by ERA-Interim reanalysis dataset around
the small island.

2. Case study

Greece is located in southeastern Europe, in the Balkan Penin-
sula, bordering Albania and Bulgaria to the north and Turkey to the
east. Greece has a long coastline with the Aegean Sea and the Ionian
Sea. Greece is one of the countries that due to its geographical
location can use a variety of energy converters, especially wind
turbines. A country like Greece has the potential to use onshore,
nearshore and offshore wind farms [47]. Greece has 6000 islands in
the Aegean and lonian Seas, of which only 227 are inhabited. This
number of islands has made Greece a unique phenomenon among
European Countries (ECs). It should be noted that this country, with
about 16,000 km of coastline, has a high wind potential in the
Aegean and lonian seas, which can be used as endless energy to
supply electricity to these areas.

The Mediterranean Sea has been analysed by several studies, it
includes several big and small islands that have high wind energy
potential and can be considered “hot spots area” such as Sicily and
Sardinia [48], Malta [49], Iberian Mediterranean coast and the
Balearic islands [50], Greek islands [51]. Given that more than 70%
of near and offshore areas have significant wind capacity, it is ex-
pected that the wind industry will have a significant growth in the
next future even though nowadays the operation of offshore winds
in these areas are relatively new [52].

Before the commissioning and installation of renewable energy
converters important issues need to be considered, for instance, the
social acceptance is one of the crucial ones; indeed, public trust in
decision-makers and consideration of the views of different seg-
ments of society is crucial in the decision. One aspect that may be
strongly influenced by the energy converters installation around
islands is tourism activities. This is despite the fact that the Greece
islands attract thousands of tourists every year and play an
important role in the country and local economy [53].

Since islands are located in sea areas, the number of obstacles
for the OW are reduced. This translates in higher wind speed and
more stable winds with low fluctuations compared to the main-
land, thus they are more suitable and safer for the OW farm
installation. Higher and more continuous winds mean more elec-
tricity and more stable production with less issue at grid level for
energy management [54]. However, it should be borne in mind that
the wind farm installations are strongly related to specific local/
national characteristics and laws [55].

In this regard, to better understand the wind speed potential in
Greek islands, the Samothraki island has been selected as a case
study. The Samothraki island is located (40.4477° N, 25.5918° E) in
the northeast part of the Aegean archipelago within the
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Mediterranean Sea and has a 178 km? surface [56]. Fig. 1 shows the
location of the island and the surrounding area (i.e. a 40 km radius
has been considered) under study including also the Gokgeada is-
land. Studies show that the island has good wind potential for use
of near and OW turbines [3] and also the water depth around the
island is between 0 and 35 m, which is suitable for installing fixed
and floating turbines [57].

3. Materials and methods

In this study, the ERA-Interim reanalysis dataset covering the
period between January 1979 and July 2019 (478 monthly average
ERA-Interim reanalysis dataset) has been used for identifying wind
speed in the Samothraki island surrounding area. To this aim, wind
speed ERA-Interim datasets have been processed to extract
monthly means of daily means maps for 40 years. The method uses
NetCDF format data processing and mapping of the studied areas
and is based on the use of two main software in two main steps.

In the first step, after downloading all ERA-Interim reanalysis
datasets into different layers using the GIS (Geographical Infor-
mation System) software, all the collected data were used to pre-
pare a map of the Mediterranean Sea (Fig. 2a). Then by focusing on
the OW speed potential in the pixels covering the area of Samo-
thraki island (Fig. 2b), the potential of each interested region was
identified for the second phase of studies. Furthermore, at this
stage, near and OW speed data extracted from the Mediterranean
Sea and around the Samothraki island has also been used as a
reference for error evaluation.

In the second step, all of the NetCDF files have been merged and
displayed as one layer, by means of the Steak Layer tool, to
extrapolate OW speed in each pixel of the case study area. Two
areas with the highest potential around the island have been
identified (i.e. ROI 1 (West of Samothraki), ROI 2 (East of Samo-
thraki)) in addition to the whole surrounding area of the Samo-
thraki island (i.e. ROI 3). The ERA-Interim reanalysis processing by
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means of the ROI tool has been used to find OW characteristics in
the specific two interested areas. The second step can be used to
identify the most powerful sites in a small area to identify the
average OW speed potential of two different interested areas (ROIs)
located in the west and east part of the Samothraki island.

Finally, the wind speed from ERA-Interim reanalysis dataset
obtained for the three different interested areas (i.e. ROI 1, ROI 2
and ROI 3) at 10 m height has been compared with the wind speed
recorded by a cup anemometer installed on the Samothraki island
weather station at 90 m height. The meteorological station of the
Samothraki island is located in the western part of the island
(latitude: 40.46200° N, longitude: 25.50109° E).

In order to compare the extrapolated wind speed V at heights of
10 m with the one measured by the cup anemometer at 90 m
Equation (1) has been used.

_ v LOG(Zeo) — LOG (Zy9)
0= 1000G (Z10) — LOG (Zo)

Vg (1)

where, Vgq is wind speed at 90 m hub height, V1o is wind speed at
10 m standard high from sea water surface, Zg is the roughness of
the sea surface water is 0.0002 m, Zi9 and Zgg are as reference
heights [58,59].

3.1. Time series data analysis

Time-series data analysis considers the fact that data samples
taken over a specific period may hold an internal linear or nonlinear
structure such as autocorrelation and seasonal variation that
should be made the scene [60]. In this research, we investigate to
detect both autocorrelation and seasonality (periodic fluctuations)
properties.

3.1.1. Autocorrelation
Autocorrelation signifies a mathematical representation of the
similarity rate between an assigned time series data and a lagged
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Fig. 1. Showed the Samothraki island location.
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Fig. 2. Shows wind speed per (m/s) of a) the Mediterranean Sea and b) focused of interested area around the Samothraki island.

tale of itself across consecutive time intervals [61]. It is calculated Indeed, the autocorrelation function (ACF) estimates the correla-
similarly to the correlation between two various time series. tion between y; and y; + k, where k = {0, ... ,K } and y; is a
: stochastic procedure. Thus, the measure of autocorrelation for lag k

However, autocorrelation applies the equivalent time series twice:
earlier in its initial order and once lagged one or more periods. is computed as follows:
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(2)

Where ¢ is the initial sample variance of the applied time series,
and ¢y, is calculated using Eq. (3):

k=7 > V=Y )Wer1-Y) 3)
t=1
It is assumed that q is the lag beyond where the AFC is effectively
zero in theory. Therefore, the measured standard error of the
autocorrelation at lag k > q is summarised as follows:

If the distribution of the time series is quite random, then the
standard error decreases to 14/T.

3.1.2. Seasonality

When a time-sequential data has a trend, generally autocorre-
lations for short lags incline to be a positive and high value. This is
because observations near in periods are likewise close in size. An
iterative pattern in each year is recognised as seasonal variation.
However, the phrase is employed more commonly to repeating
patterns in any fixed term. In order to apply a seasonal filter to
measure the seasonal elements of a time series data, it is assumed
that all observations recorded during the time interval k, k=1, ...
,s where s can be known as the periodicity of the seasonality [62]. A
seasonal filter made of a weighted convolution and observations
recorded during the previous and next periods k. As an example,
given monthly time series data where s = 12, a smoothed January
observation can be a symmetric and weighted average of January
recorded data. Therefore, for a general time seriesx;, (t =1,..., N
), the seasonally smoothed sample at each time stepk +js,j=1, ...
N =1, is calculated by Eq. (5).

(5)

-
Skejs = D Ak jel)s

l=—r
Where g, is the weights and computed as follows:
(6)

With regard to applying a S, *m seasonal filter, we should define a
symmetric n-term moving average of m-term averages. This
computation is matched with using a symmetric and weighted
moving average that is unequal to n +m —1 terms. Here we assume
thatr = (n + m — 1) /2. The applied weights in a S3 *3 filter is

; 121 21
listed as {§,§,§,§,§

collected during the 10 years per month from 2005 to 2015, the
defined S3 *3 filter value for January 2005 will be:

}. Consequently, if the time series data

11 1
Jangs = 3 {g (Jangs + Jangg +Jangs) + 3 (Jangg +Jangs +Jangg)

+ % (Jangs + Jangg +Jano7)]
(7)

Furthermore, we will have seven terms for a S3; *5 filter
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1 21112 1

including {15 1515 15 15 175 15 } The observations will be lost at the

initial and end of the time series data, if we use a symmetric filter
obviously. To figure out this issue, we can apply asymmetrical
weights at the end of time series data.

In this work, we used a 5-term S3 .3 seasonal convolutional filter
in order to deform the seasonal trend in the dataset. Initially, it is
applied a moving average to January’s values (at records 1, 13, 25,
..., end), and then implement a convolutional to the column for
February (at indices 2, 14, 26, ..., end), and in the following for the
resting months. Next, an asymmetric weight after the convolu-
tional filter is applied using conv2 function. In order to keep the
seasonal component around one, approximately, and then split by,
a 13-term convolutional window of the expected seasonal
component.

4. Results

Fig. 2 shows the yearly average wind speed (m/s) in the period
2015—2018 evaluated from ERA-Interim datasets produced by
ECMWEF for the Mediterranean (Fig. 2a) and the focus on the
Samothraki island (Fig. 2b). The ERA-Interim reanalysis dataset has
been analysed to map the wind speed potential in the Samothraki
island, the result showed that the southeast and the west parts of
the island have a promising wind speed potential and might justify
further analysis.

Fig. 2 shows the wind speed (in m/s) for these two cases to
better understand the OW potential in a large and small area. By
using this step, the user can focus on the Hot Spot pixels around the
island.

In Fig. 3, the 40 years ERA-Interim reanalysis dataset has been
analysed in two regions using the ROI tool. Firstly, a total area
(Mediterranean Sea) and then, the Samothraki island has been
analysed considering an area of 40 km distance around the island.
Considering all the above mentioned about the advantage of using
and why the popularity and efficiency of reanalysis dataset source
of the description below of Table 1 can be used as a reliable refer-
ence in various academic and governmental studies.

Fig. 4 (correlogram) represents the sample ACF and Partial
Autocorrelation Function (PACF) to qualitatively evaluate the
autocorrelation between both time series data including the
average wind speed in Mediterranean Sea and Samothraki island
surrounding area.

Observing closely, we can recognise that the 1st, 12th, and the
24th observations are highly correlated. This indicates that a very
similar pattern of the wind speed value at every 12 months in both
locations will be encountered. Fig. 5 shows the estimation of wind
speed seasonal component in Mediterranean Sea. It is noticed that
the seasonal level alters over the scope of the wind speed data.

Fig. 6 is an example of using this data to show the monthly wind
speed in the Mediterranean Sea, which is processed for the period
of August 2018 to July 2019.

In Fig. 7, the monthly average wind speed (m/s) in the Medi-
terranean Sea and the Samothraki island with a period between
(1979—2019) for 40 years reanalysis dataset was shown.

Fig. 8 shows the monthly wind speeds obtained from the two
study areas in the western and eastern parts of the island. The
analysis suggests that wind speed in the west is higher than in the
east region. The fact that the main wind direction is from west to
east and the existence of mountainous areas with the 1400 m high
from sea level on the Samothraki island can be the main cause of
the lesser average wind speed in the eastern part (i.e. ROI 2).
Another very important factor that can be noticed is the trend of
wind speed change in the past years. Fig. 9, illustrates how wind
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Fig. 4. The standard and partial sample autocorrelation function of the mean wind speed in Mediterranean Sea and Samothraki island. (a) Standard observations autocorrelation
function in Mediterranean Sea, (b) Standard observations autocorrelation function in Samothraki Island, (c) Partial observations autocorrelation function in Mediterranean Sea, (d)
Partial observations autocorrelation function in Samothraki Island. The horizontal lines display the upper and lower confidence bounds.

speed changes in these two areas of the island over the past 40
years.

Finally, the RMSE and R values of the selected ROIs have been
evaluated versus the measured values from the cup anemometers
installed on the island. Fig. 10 a) shows the RMSE and R value for
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ROI1; Fig. 10 b) shows the RMSE and R values in the eastern region
(i.e. ROI2). This difference in the amount of error can be attributed
to the difference in the distance between the two areas under
studies and the meteorological station. Of course, the effect of the
surface roughness of the island (natural and man-made heights and
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Fig. 5. The estimation of wind speed seasonal component in Mediterranean Sea. (a) The mean and the 13-term moving average observations from the time series data of Med-
iterranean Sea, (b) Extracted the estimated seasonal component from Mediterranean Sea observations.

elevations) on wind speed in the eastern region cannot be ignored.
Fig. 10 c) also generally shows the amount of RMSE and R for the
entire study area at a distance of 40 km from around the island.

5. Discussion

It can be said that OW energy is developing and expanding with
avery significant trend in the world, which is directly related to the
needs of human societies and the growth of technology. The
growing development of OW energy is a good sign of this dramatic
trend in wind energy use around the world. Proving the effective-
ness of offshore sites is not very easy. A few metres per second
difference in wind speed can turn a good site into a bad site, and
because of the high and constant wind speeds that occur in the sea
and oceans, OW farms can generate more electricity. OW source
assessment in a specific area requires the availability of high quality
and accurate wind data over a long time period. To this purpose,
ground measuring devices have been traditionally used in the past.
This type of data is often scarce for offshore areas and does not
cover large areas and can only represent a small area.

In addition, collecting them requires time, money, and
manpower to maintain them, which further limits these devices,
especially in offshore areas. However, these devices have good ac-
curacy for collecting spatial data, if they are calibrated at the right
time. Considering all the above, it can be understood that the use of
this type of tools alone cannot be associated with a significant in-
crease in OW energy. Proper location of the OW project sites plays a
key role in their economic, technical, environmental and social
success [63]. In the first stage, these sites should have two pa-
rameters of high and continuous wind speed and low deep water in
an area with a minimum distance to the shoreline. Considering

these parameters can significantly reduce the installation and
commissioning cost in the primary OW farm site assessment steps
and the wind farms maintenance cost of the next steps.

Although suitable sites with a minimum distance to the shore-
line can be very convenient, they can cause noise during the setup
and operation stages. On the other hand, the Mediterranean Sea
islands, especially the Greek islands of Aegean Sea, are very famous
due to their natural landscapes, thus, during the planning and
design phases it is very important to analyse the impact on the
landscape of these areas so as to avoid dissatisfaction of residents
[3]. It should be considered the impact on marine and aerial species.
Many countries around the world today face many limitations in
evaluating optimal sites for developing OW farms. These criteria
must be compatible with the interests of the investment companies
that finance this sector, and on the other hand, they must be
compatible with national and environmental laws. In this regard,
more research that can increase the understanding of the human
societies in selecting appropriate criteria for better use of RESs can
lead to the selection of more compatible sites with all sectors.

This reanalyses dataset have the ability to address large areas
wind potential assessment as well as focus on small areas with
appropriate accuracy. It can be said that the data obtained from the
projects of well-known operational centers such as ECMWF, NCEP
can be widely used to conduct initial assessments of suitable areas
for wind farms installation and operation. In addition to having the
advantage of extensive and long-term spatial coverage with a
reasonable resolution, this dataset can be made available to re-
searchers free of charge. The error rate of these datasets can be
reduced to a minimum and time and cost consuming measurement
campaigns can be avoided using this dataset.

The shape files, maps, atlas, vector point and polygon with
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Fig. 6. Monthly wind speed evaluated from ERA-Interim datasets produced by ECMWF for the Mediterranean Sea in the period Aug 2018—]Jul 2019.
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Fig. 8. Monthly average wind speed in the ROI 1 and ROI 2 located in the west and east of Samothraki island with period (1979-2019).

NetCDF, ASCII (American Standard Code for Information Inter- data from Earth observation systems with the aim of identifying
change) data and datasets format generated by these centers can be temporal and geographic data gaps can make a significant differ-
considered a variable and dynamic material. Gaining an overview of ence in the offshore renewable energy development. On the other
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hand, the development and research of innovative methods that
can use remote sensing data analysis should be studied and iden-
tified to reduce the data gap in the forgotten areas. The proposed
methods in the first place can have various advantages, but the
most important of them are the following: a) it is easy to work with
shortest possible time; b) significantly reduce the computational
error of the project; c) can easily cover forgotten study areas and
existing gaps; d) according to different group and platform goals
can provide facilities to developed and expanded in the next stages
of projects.

6. Conclusions

To make a preliminary assessment of offshore wind energy at
the sites under study, researchers need long-term wind data, while
facing limitations on ground-based devices for data collection.
Therefore, long-term wind data are easily obtained from atmo-
spheric numerical models or satellite products. The purpose of this
study is to present a fast method for analysing the initial wind
speed in the OW region to identify high wind power areas. The
ERA-Interim reanalysis dataset has been used to analyse OW speed
around the Samothraki island for 40 years. The ERA-Interim rean-
alysis dataset is free and supported by an unlimited source policy. In
this research, all data has been presented as a single layer, we began
to identify specific sites for WTGs installation. Then, two interesting
areas of the island are investigated to identify the areas with the
highest potential.

The results show that the wind speed in ROI 1 in the west of the
island has a greater potential than ROI 2 in the east of the island.
This is an effective and fast method that can help identify areas
suitable for the OW turbine installations. This way it is possible to
simultaneously analyse and compare a large number of areas of
interest. A preliminary assessment method has been introduced for
the initial identification of OW sites around islands that can help
bridge the gap created by terrestrial data constraints and assess
forgotten marine areas. This method can easily analyse the initial
results of rapid OW assessment of the desired site in large areas in a
few steps. This method can save time with high replicability and
reduce the cost of identifying the desired sites. It can be said that
this method can help us to better understand forgotten areas wind
potential for the development of OW sites farm in different parts of
the world.
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