

Creating products and knowledge for the Mediterranean

MARINE ECOSYSTEM MODELLING ECOPATH WITH ECOSIM

2nd ODYSSEA Summer School, Alonissos, 2-6/9/2019

Donna Dimarchopoulou

Aristotle University of Thessaloniki

ddimarch@bio.auth.gr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727277

Ecological models

the mathematical simulation of ecological processes

Ecosystem models

the mathematical simulation/representation of a system

(population/community/ecosystem)

- describe the structure and function of a system
- ∽ useful for the Ecosystem Approach to Fisheries / Ecosystem Based Fisheries Management

usually complement single species models

Ecosystem models

- the research question
- the organisms we want to focus on
- the factors interacting with the target organisms (physical, biological, anthropogenic)
- the time period we want to focus on (short- or long-term)
- 🗢 data availability
- its use (research or business)
- how flexible we want it to be
- user capabilities

- Whole ecosystem models: aim to include all the trophic levels of the studied ecosystem
- Minimum Realistic Models (MRM): they have a limited number of species/groups,
 - mainly those that interact with the target species
- C **Dynamic System Models (biophysical):** represent both bottom-up (natural) and topdown (biological) processes interacting in an ecosystem
- Extensions of single-species assessment models (ESAM): expand single-species
 - assessment models taking into account some interactions among species

	1	2	3	4	5	6	7	8	9	10
RESEARCH QUESTION/ MODEL	Ecopath with Ecosim and ECOSPACE	IGBEM	ATLANTIS	INVITRO	ERSEM II	SSEM	KPFM*	MRM e.g. Punt and Butterworth (1995)	MSVPA and MSFOR	MSM
1a. Understanding - subset of ecosystem										
1b. Understanding - complete ecosystem										
2. Impact of target species										
3. Effect of top predators										
4. Competition: marine mammals - fisheries										
5. Rebuilding depleted fish stock										
6. Biases in single-species assessment						Who	le ecosy	stem mo	odels	
7. Ways to distribute fishing effort among fisheries										
8. Under-exploited species										
9. Change in ecosystem state										
10. Spatial concentration of fishing										
 Environmental/physical effects 										
12. Effects of habitat modification										
13. Effects of by-catch										
14. Introduction of non-native species										
* Still being developed										N VA

	1	2	2	A	E	6	7	0	0	10
RESEARCH	1	2	3	4	5	0	/	o MPM o.g	9	10
	Econath with							Punt and		
QUESTION/	Ecosim and							Butterworth	MSVPA and	
MODEL	ECOSPACE	IGBEM	ATLANTIS	INVITRO	ERSEM II	SSEM	KPFM*	(1995)	MSFOR	MSM
1a. Understanding - subset of										
ecosystem										
1b. Understanding - complete										
ecosystem										
2. Impact of target species									l	
3 Effect of ton predators										
4 Competition: marine										
mammals - fisheries										
5. Rebuilding depleted fish stocks	6									
6. Biases in single-species		Dlanktor	modele							
assessment		Planktor	models							
7. Ways to distribute fishing										
effort among fisheries										
8. Under-exploited species										
9. Change in ecosystem state										
10. Spatial concentration of										
fishing										
11. Environmental/physical										
effects										
12. Effects of habitat										
modification										
12 Efforts of by cotch										
14. Introduction of non-ration										
14. Introduction of non-native										
* Still being developed					.	ļ			<u> </u>	8 10
B de , eroped							1			

	1	2	3	4	5	6	7	8	9	10
RESEARCH QUESTION/ MODEL	Ecopath with Ecosim and ECOSPACE	IGBEM	ATLANTIS	INVITRO	ERSEM II	SSEM	KPFM*	MRM e.g. Punt and Butterworth (1995)	MSVPA and MSFOR	MSM
1a. Understanding - subset of ecosystem										
1b. Understanding - complete ecosystem										
2. Impact of target species										
3. Effect of top predators										
4. Competition: marine mammals - fisheries										
5. Rebuilding depleted fish stocks	5									
6. Biases in single-species assessment		N	/linimun	n realisti	c model	S				
7. Ways to distribute fishing effort among fisheries										
8. Under-exploited species										
9. Change in ecosystem state										
10. Spatial concentration of fishing										
 Environmental/physical effects 										
12. Effects of habitat modification										
13. Effects of by-catch										
14. Introduction of non-native species										
* Still being developed										

ODYSSEA

	11	12	13	14	15	16	17	18	19	20
	MULTSPEC	GADGET	Bioenergetic/ allometric models	OSMOSE	SEAPODYM	CCAMLR models	EPOC*	SMOM*	ESAM	SEASTAR
1a. Understanding - subset of ecosystem										
1b. Understanding - complete ecosystem										
2. Impact of target species										
3. Effect of top predators										
4. Competition: marine mammals - fisheries										
5. Rebuilding depleted fish stocks										
6. Biases in single-species assessment						Minimur	n realist	ic model	S	
7. Ways to distribute fishing effort among fisheries										
8. Under-exploited species										
9. Change in ecosystem state										
10. Spatial concentration of fishing										
11. Environmental/physical effects										
12. Effects of habitat modification										
13. Effects of by-catch										
14. Introduction of non-native species										
* Still being developed										

ODYSSEA

	11	12	13	14	15	16	17	18	19	20
	MULTSPEC	GADGET	Bioenergetic/ allometric models	DSMOSE	SEAPODYM	CCAMLR models	EPOC*	SMOM*	ESAM	SEASTAR
1a. Understanding - subset of ecosystem										
1b. Understanding - complete ecosystem										
2. Impact of target species										
3. Effect of top predators										
4. Competition: marine mammals - fisheries										
5. Rebuilding depleted fish stocks										
6. Biases in single-species assessment							Dynami	c system	n models	5
7. Ways to distribute fishing effort among fisheries								-		
8. Under-exploited species										
9. Change in ecosystem state										
10. Spatial concentration of fishing										
 Environmental/physical effects 										
12. Effects of habitat modification										
13. Effects of by-catch										
14. Introduction of non-native species										
* Still being developed										

	11	12	13	14	15	16	17	18	19	20
	MULTSPEC	GADGET	Bioenergetic/ allometric models	OSMOSE	SEAPODYM	CCAMLR models	EPOC*	SMOM*	ESAM	SEASTAR
1a. Understanding - subset of ecosystem										
1b. Understanding - complete ecosystem										
2. Impact of target species										
3. Effect of top predators										
4. Competition: marine mammals - fisheries										
5. Rebuilding depleted fish stocks										
6. Biases in single-species assessment		Anta	rctic mo	dels						
7. Ways to distribute fishing effort among fisheries										
8. Under-exploited species										
9. Change in ecosystem state										
10. Spatial concentration of fishing										
 Environmental/physical effects 										
12. Effects of habitat modification										
13. Effects of by-catch										
14. Introduction of non-native species										
* Still being developed										

11121314151617181920 $MULTSPEC$ GADGETBiomegret/aliometric modelsSeason osmoseSeason seasonCCAMLR modelsEPOCSMOMESAMSeason seasonSeason season1a. Understanding - subset of consystemGADGETBiomegret/aliometric modelsSeasonGAMUEEPOCSMOMESAMSeason <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
NULTSPE ADGET Biomergetic/ londels SMOSE SEAPOYM CAMLE Models POC SMOM PEAM SEAPA 14. Understanding - output 1 <th></th> <th>11</th> <th>12</th> <th>13</th> <th>14</th> <th>15</th> <th>16</th> <th>17</th> <th>18</th> <th>19</th> <th>20</th>		11	12	13	14	15	16	17	18	19	20
14. Understanding - subset of ecosystem image: subset of ecosystem </td <td></td> <td>MULTSPEC</td> <td>GADGET</td> <td>Bioenergetic/ allometric models</td> <td>OSMOSE</td> <td>SEAPODYM</td> <td>CCAMLR models</td> <td>EPOC*</td> <td>SMOM*</td> <td>ESAM</td> <td>SEASTAR</td>		MULTSPEC	GADGET	Bioenergetic/ allometric models	OSMOSE	SEAPODYM	CCAMLR models	EPOC*	SMOM*	ESAM	SEASTAR
1b. Understanding - complete Image: Second Seco	1a. Understanding - subset of ecosystem										
2. Impact of target species Image: Species of top predators Image: Species of top predators <t< td=""><td>1b. Understanding - complete ecosystem</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1b. Understanding - complete ecosystem										
3. Effect of top predatorsImage: state of top	2. Impact of target species										
4. Competition: marine mammals - fisheriesImage: second	3. Effect of top predators										
5. Rebuilding depleted fish stocks Image: store stor	4. Competition: marine mammals - fisheries										
6. Biases in single-species assessment end Extended single-species and single-species and species assessment ind ind <td< td=""><td>5. Rebuilding depleted fish stocks</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5. Rebuilding depleted fish stocks										
7. Ways to distribute fishing effort among fisheries Image: Section of Sectin of Sectin of Sectin of Sectin of Section of Section of Section	6. Biases in single-species assessment			Extende	d single	-species	models				
8. Under-exploited species Image:	7. Ways to distribute fishing effort among fisheries				0	•					
9. Change in ecosystem state Image: Second state s	8. Under-exploited species										
10. Spatial concentration of fishing Image: Spatial concentration of fishin	9. Change in ecosystem state										
11. Environmental/physical effects effect effect<	10. Spatial concentration of fishing										
12. Effects of habitat modification Image: Constraint of the second	 Environmental/physical effects 										
	12. Effects of habitat modification										
13. Effects of by-catch	13. Effects of by-catch										
14. Introduction of non-native species Image: species species Image: species specie	14. Introduction of non-native species										

Ecopath with Ecosim

Ecopath with Ecosim

>433 unique models globally

România + Tates 0 O'zbekiston + Türkmenistan Türkiye رافغانستان العراق C WEYOSO Leall الجزائر ٨٣٠٥٥ ليبيا 34020 السعودية xico India موريتانيا Mali Niger سودان تشاد Tchad Ködörösése. Nigeria Venezu tî Bêafrîka ኢትዮጵያ République Centrafricaine olombia République démocratique du Congo Brasil Angola Zambia Mocambique Bolivia Zimbabwe Madagasikara ibia Paragua With Africa Argentina © OpenStreetMap contributors Mouse is not over map

EcoBase repository

odysseaplatform.eu |@odysseaplatform

>40 models in the Mediterranean

EcoBase repository

mostly in the **western** (e.g. Catalan Sea; Coll et al 2009) and **central** (e.g. Adriatic; Coll et al. 2007) part of the basin

eastern Med: *Israel* (Corrales et al. 2017; 2018), *Greece* (Piroddi et al. 2010; Tsagarakis et al. 2010; Moutopoulos et al. 2013)

EcoBase repository

>40 models in the Mediterranean

Within the ODYSSEA project, Ecopath models are being built for the first time in:

Morocco, Egypt and Gökova Bay

Why is it successful?

- simple and understandable logic, relatively high realism
- advanced features (representation of the structure and function of the ecosystem, spatio-temporal management and environmental scenarios, evaluation of management strategies)
- friendly user interface, simple to use, user guide available
- c> extended user community
- evolving by developers as well as independent users (open-source code)
- ongoing workshops all over the world
- 🗢 data meta-analysis

ODYSSEA

Mass-balance model (whatever is consumed within the system cannot exceed what is produced in the system)

For every functional group of organisms:

Production = catches + predation mortality + biomass accumulation + net migration + other mortality

Consumption = production + respiration + unassimilated food

Study area - Thermaikos Gulf

- the user defines the number and content of FGs
- focus on the groups we are most interested in, e.g. predators, commercial species
- multi-stanza groups can be defined (connected FGs of different life stages of the species)
- C data availability
- ∽it's better to include a group with no data (guesstimates) rather than exclude it

ongoing workshops all over the world

🗢 data meta-analysis

Low trophic level	Invertebrates	Fish	Other
Phytoplankton	Zooplankton	Red mullets	Sea turtle
Discards	Benthic small crustaceans	Anglerfish	Seabirds
Detritus	Polychaetes	Flatfishes	Dolphins
	Shrimps	Other gadiforms	
	Crabs	Hake	
	Benthic invertebrates	Demersal fishes 1	
	Octopuses & cuttlefish	Demersal fishes 2	
	Squids	Demersal fishes 3	
		Demersal fishes 4	
		Picarels and bogue	
		Sharks	
		Rays & skates	
		Anchovy	
		Sardine	
		Horse mackerels	
		Mackerels	
		Other small pelagics	
		Medium pelagics	
		Large pelagics	

Functional groups

Shrimps

Melicertus kerathurus Parapenaeus longirostris

> **Red mullets** *Mullus barbatus Mullus surmuletus*

Anglerfish Lophius budegassa Lophius piscatorius

Medium pelagics Auxis thazard Katsuwonus pelamis Pomatomus saltatrix Sarda sarda Seriola dumerili

Large pelagics Thunnus thynnus Xiphias gladius

Picarels and bogue Spicara smaris Spicara maena Spicara flexuosa Boops boops

Rays and skates Leucoraja naevus Raja clavata Raja radula Torpedo marmorata Rhinobatidae Horse mackerels Trachurus trachurus Trachurus mediterraneus

Sharks

Mustelus spp. Squalidae *Scyliorhinus canicula*

> Mackerels Scomber colias Scomber scombrus

Other small pelagics Mugilidae *Belone belone Sardinella aurita*

Multi-species groups should be defined based on ecological feature rather than taxonomic

🗢 habitat

size (e.g. small/medium/large pelagics, small/medium/large demersal fish etc)

Study area – Thermaikos Gulf

Biomass (t/km²)

- acoustic surveys
- trawling surveys

Diet composition

literature reviews on feeding habits of Mediterranean fish

Stergiou & Karpouzi 2002; Karachle & Stergiou 2017; Tsagarakis et al. 2010

- empirical equations
- literature

Landings & discards (t/km²/year)

- Hellenic Statistical Authority
- discard ratio

Tsagarakis et al. 2014 "Mediterranean fishery discards"

Biomass (t/km²)

Thermaikos Gulf - Ecopath	with Ec	cosim 6.5.14040.0				
– File View Ecopath Ecos	im E	cospace Tools Windo	ws Help			
Econath V@Ecosim V	Ecos	space 🔻 🗬 Ecotracer 🔻 🗖	C·\Us	ers\donna	\Desktop	
Vavigator	₽ [C. (05		(Debittop	Controllo
		a Start 🖓 Basic estimate	s / 🐷 Bas	ic input		
		<u>e</u> fine groups 🕷 <u>E</u> dit mul	lti-stanza			
Model parameters		Group name	Habitat area (fraction)	Biomass in habitat area (t/k	Producti on / biomass	Consum ption / biomass
Diet composition	1	Phytoplankton	1.000	7.866	117.3	
Detritus fate	2	Zooplankton	1.000	6.100	62.47	186.4
Other production	3	Benthic small crustaceans	1.000	1.110	7.686	57.12
> 🔿 Fishery	4	Polychaetes	1.000	4.808	1.712	13.08
> X loois	5	Shrimps	1.000	0.306	3.339	7.896
✓ Soutput	6	Crabs	1.000	0.412	2.541	5.187
	7	Benthic invertebrates	1.000	8.710	1.215	3.434
Mortality rates	8	Octopuses and cuttlefish	1.000	0.392	2.900	5.807
	9	Squids	1.000	0.363	2.600	26.47
Niche overlan	10	Red mullets	1.000	0.196	1.908	7.192
Electivity	11	Anglerfish	1.000	0.203	1.100	3.777
Search rates	12	Flatfishes	1.000	0.107	1.820	8.741
> Section rates	13	Other gadiforms	1.000	0.580	1.450	6.493
> Sector Particle size distribution	14	Hake	1.000	0.400	0.587	3.700
> 🔀 Tools	15	Demersal fishes 1	1.000	0.150	2.400	9.306
Ecosim	16	Demersal fishes 2	1.000	0.246	1.600	7.739
Ecospace	17	Demersal fishes 3	1.000	0.322	1.400	4.592
🛪 Tools	18	Demersal fishes 4	1.000	0.237	1.900	11.10
	19	Picarels and bogue	1.000	0.663	1.500	8.339
	20	Sharks	1.000	0.0710	0.698	4.080
	21	Rays and skates	1.000	0.141	1.000	3.394
	22	Anchovy	1.000	2.250	1.753	6.693
	23	Sardine	1.000	1.950	1.778	11.67
	24	Horse mackerels	1.000	0.732	1.000	7.315
	25	Mackerels	1.000	0.294	1.022	6.448
	26	Other small pelagics	1.000	1.170	1.400	6.365
	27	Medium pelagics	1.000	0.250	0.425	3.706
	28	Large pelagics	1.000	0.0490	0.400	2.529
	29	Loggerhead turtle	1.000	0.0200	0.160	2.680
	30	Seabirds	1.000	0.00100	4.780	111.6
	31	Dolphins	1.000	0.0200	0.0800	13.81
	32	Discards	1.000	_		
🕑 Status 🛛 🖉 Remarks						
I: Phytoplankton (Detritus imp	oort)					

Catch per species / Swept area (gear characteristics: wing opening * duration of the haul)

For each species **average biomass** from 3 years **(1998-2000)**

For the **FG**, **sum of the biomasses** of all species

For the final biomass value of the FG application of **catchability factor**

(Sánchez & Olaso 2014)

- 10% demersal species
- 15-20% benthic species

Biomass (t/km²)

Thermaikos Gulf - Ecopath v	vith Eq	cosim 6.5.14040.0				
<u>Eile View E</u> copath Eco <u>s</u> i	m E	cospace <u>T</u> ools <u>W</u> indo	ws <u>H</u> el	р		
🛿 🤤 Ecopath 💌 🎯 Ecosim 💌 🕯	Ecos	space 🔻 🛡 Ecotracer 👻 😡	C:\U	sers\donna	\Desktop'	UNIVERS
Navigator [‡]		🕽 Start 🍃 Basic estimate	s 🖉 😂 🗛	asic input		
🗸 🚍 Ecopath	Э (с)efine groups 🛛 👻 Edit mu				
✓ Input G Model parameters G Basic input		Group name	Habitat area (fraction	Biomass in habitat area (t/k	Producti on / biomass	Consum ption / biomass
Diet composition	1	Phytoplankton	1.000	7.866	117.3	
🗔 Detritus fate	2	Zooplankton	1.000	6.100	62.47	186.4
Other production	3	Benthic small crustaceans	1.000	1.110	7.686	57.12
> 🔿 Fishery	4	Polychaetes	1.000	4.808	1.712	13.08
> 🔆 Tools	5	Shrimps	1.000	0.306	3.339	7.896
✓ S Output	6	Crabs	1.000	0.412	2.541	5.187
Basic estimates	7	Benthic invertebrates	1.000	8.710	1.215	3.434
	8	Octopuses and cuttlefish	1.000	0.392	2.900	5.807
> Mortality rates	9	Squids	1.000	0.363	2.600	26.47
Nicho overlap	10	Red mullets	1.000	0.196	1.908	7.192
	11	Anglerfish	1.000	0.203	1,100	3.777
	12	Flatfishes	1.000	0,107	1.820	8.741
Search lates	13	Other gadiforms	1.000	0.580	1.450	6.493
> S Particle size distribution	14	Hake	1.000	0.400	0.587	3,700
> S Tools	15	Demersal fishes 1	1.000	0.150	2.400	9,306
Secosim	16	Demersal fishes 2	1.000	0.246	1.600	7.739
	17 Demersal fishes 3	1.000	0.322	1.400	4.592	
🔆 🔆 Tools	18	Demersal fishes 4	1.000	0.237	1,900	11.10
	19	Picarels and boque	1.000	0.663	1.500	8.339
	20	Sharks	1.000	0.0710	0.698	4.080
	21	Rays and skates	1.000	0.141	1.000	3.394
	22	Anchovy	1.000	2.250	1.753	6.693
	23	Sardine	1.000	1.950	1.778	11.67
	24	Horse mackerels	1.000	0.732	1.000	7.315
	25	Mackerels	1.000	0.294	1.022	6.448
	26	Other small pelagics	1.000	1.170	1.400	6.365
	27	Medium pelagics	1.000	0.250	0.425	3.706
	28	Large pelagics	1.000	0.0490	0.400	2.529
	29	Loggerhead turtle	1.000	0.0200	0.160	2.680
	30	Seabirds	1.000	0.00100	4.780	111.6
	31	Dolphins	1.000	0.0200	0.0800	13.81
	32	Discards	1.000	_	1	
🕘 Status 🛛 🖉 Remarks				1 	1	
: Phytoplankton (Detritus imp	ort)					

Catch per species / Swept area (gear characteristics: wing opening * duration of the haul)

For each species **average biomass** from 3 years **(1998-2000)**

For the **FG**, **sum of the biomasses** of all species

For the final biomass value of the FG application of **catchability factor**

(Sánchez & Olaso 2014)

- 10% demersal species
- 15-20% benthic species

Biomass (t/km²)

Method	+	_
Stock assessment models	 take many parameters into account reliability 	 assessments only for specific geographical areas probably different from our study area
Data onboard commercial boats (mainly trawlers)	 data frequency good seasonal coverage 	 not representative picture specific fishing grounds gear selectivity uncertainty regarding gear catchability
bottom trawl surveys	 fixed gear low selectivity Targeted, stratified sampling time-series 	 lacks seasonality uncertainty regarding gear catchability
acoustic surveys	reliabilitytime-series	only for a few pelagic specieslacks seasonality
Estimation from landings	 availability of fisheries data 	reliability of fisheries data?assumes constant CPUE

odysseaplatform.eu |@odysseaplatform

Diet composition

Weighted averages for FGs % weight

D

Х

Thermaikos Gulf - Ecopath with Ecosim 6.5.14040.0

<u>File View Ecopath Ecosim Ecospace Tools Windows Help</u>

🛛 🍃 Ecopath 👻 Ecosim 👻 Ecospace 🔻 🗣 Ecotracer 🔻 🖳 C:\Users\donna\Desktop\UNIVERSITY\Research projects\PROTOMEDEA\Ecopath\Thermaikos\Therm_eco...\Thermaikos_Base_model_1998_2000_No5_minors_after_tsag.ewe

Navigator [‡]	🖾 Start 😂 Basic estima	ates	😂 Basic	input	😂 Diet	compos	ition																	▼ ×
🗸 🚭 Ecopath	Sum diets to <u>o</u> ne																				<u>S</u> et:		Appl	y 🔤
∽ 🔿 Input	Prov) prodator	2	3	4	5	6	7	8	0	10	11	12	13	14	15	16	17	18	10	20	21	22	23	
Model parameters	1 Dhyteplepiten	2	0.0000	4	5	0	,	0	3	10		12	13	- 14	13	0 0 0 0 0	17 A 00000	10	13	20	21	- 22	2.5	
Basic input		0.000	0.0200	-	0 102	= 0.00500	-	- 0000	0 175	0 1 4 0	0.0100	0 161	0.200	0 1 2 7	0 107	0.0200	0.150	0 772	0.000	0.140	0.0250	1 000	0.131	
Diet composition	2 Zooprankton	0.200	0.0970	-	0.103	0.00500	=	0.0900	0.175	0.140	0.0160	0.101		0.137	0.107	0.150	0.152	0.773		0.142	0.0350	1.000	0.049	0.
	3 Benthic small crustaceans	•	0.0300	-	0.230	0.0600	-	0.140	0.128	0.184	0.0300	0.121	0.305	0.0630	0.131	0.200	0.0780	0.100	0.0500	0.0500	0.00600		0.0200	0.0
	4 Polychaetes	-	0.0200	0.0300	0.200	0.410	0.0200	0.0600	0.0750	0.132	0.0600	0.0220	01000	0.700	0.001	0.120	0.0950	0.0190	0.0450	0.0500	0.100			0.0
> 🖙 Fishery	5 Shrimps	-	=	=	0.0300	0.0200	=	0.01000	0.00500	0.0400	0.0200	0.0120	0.01000	0.0730	0 .0180	0.0500	0.0840	0.0450	0.00500	0.01000	0.100			0.0
> > Tools	6 Crabs	•	-	-	0.0260	0.0250	-	0.0500	0.0130	0.0800		0.0120	0.0320			0.0900	0.0380	0.0360		0.100	0.100			0.0
V S Output	7 Benthic invertebrates	-	_ 0.0300	0.0600	0.280	0.310	0.0300	0.530	0.0200	0.0240	0.100	0.0400	0.00800	0.0200	0.0830	0.0200	0.145	0.0270		0.200	0.0350			0.0
La basic estimates	8 Octopuses and cuttlefish	-	=	=	0.0200	=	=	0.0500	<u>-</u> 0.0350		0.100	0.0400	0.00500	0.0400		0.0150	0.0480			0.0800	0.0120			<u>9</u> .0
Mortality rates	9 Squids	•	=	=	=	=	=	=	0.0450					0.115	•					0.0680	0.00800			0.0
	10 Red mullets	-	=	=	=	=	=	=	0 .00900		0.0200		0.0310			0.0400					0.0550			<u> </u>
Nicho ovorlan	11 Anglerfish	•	=	=	=	=	=	=	=		0.0200									0.0200				
	12 Flatfishes	-	=	-	=	=	=	=	-		0.0200	0.01000		0.0120						0.0540	0.00800			<u>0.0</u>
	13 Other gadiforms	-	=	=	=	=	=	=	<u>-</u> 0.0220		0.100	0.120	0.00600	0.0300	-	0.0800	0.0220			0.0480	0.0400			<mark>ۇ</mark> .0
	14 Hake	-	=	=	=	=	-	=	<mark>_0</mark> .00200		0.0360			0.0400						0.0460	0.0260			4
Particle size distribution	15 Demersal fishes 1		-	=	-	<mark>_0</mark> .00300	-	-	<mark>_0</mark> .00100			0.0800	0.0300	0.0200		0.0150				0.0430	0.0800			
	16 Demersal fishes 2		-	=	-	=	-	<u>_</u> 0.0200	-		0.0500	0.0400		0.0200			0.0500				0.0300			
Ecosim	17 Demersal fishes 3	-	=	=	=	0.00200	=	0.0400	-			0.120	0.01000	0.0400							0.0300			
	18 Demersal fishes 4	-	=	=	=	0.00200	=	=	0.00100		0.0360	0.0700	0.0150	0.0400		0.0300	0.01000			0.0280	0.0600			
> Tools	19 Picarels and bogue	-	-	-	=	-	-	<mark>.0.01000</mark>	0.0230		0.080.0		0.0320	0.0300		0.0750	0.0550				0.01000			0.0
	20 Sharks	-	-	-	-	-	-	-	0.00400											0.000100				
	21 Rays and skates		-	-	-	-	-	-	_		0.0500	0.00800								0.0150				
	22 Anchovy		-	-	-	-	-	-	0.156		0.0300	0.0400	0.184	0.160			0.114			0.0180	0.195		1	0.0
	23 Sardine	-	-	_	-	-	-	-	0.163		0.0500	0.00800	0.01000	0.110	-	0.0300	0.0500			0.0200	0.0500		3	0.0
	24 Horse mackerels		-	-	-	-	_	_	0.0300		0.130	0.0690			-					0.0480	0.01000			
	25 Mackerels	-	_	_	-	-	_	_	0.00300		0.0500	0.0200				0.0300	0.0500							<u> </u>
	26 Other small pelagics	-	_	_	-	-	_	_	0.0900					0.0500		0.0300							1	0.0
	27 Medium pelagics		_	_	-	_	_	_	_															
	28 Large pelagics	-	_	_	_	_	_	_	_															
	29 Loggerhead turtle		_	-	-	_	_	_	_						-								1	
	30 Seabirds	2	_	_	-	_	_	_	_						-								1	- 1
	31 Dolphins	2	_	_	-	_	_	_	_						-									- 1
	32 Discards		00300	-	0 0150	0 01000	-	_	_				0 0130		-			-		0 01000	01000			
		-					-	-		-		-		-	-	-	-	-	-			-	-	
																						_		/
🧐 Status 🛛 🖉 Remarks 📔																								
1: Phytoplankton (Detritus impo	rt)																					Therm	haikos G	ulf

Stergiou & Karpouzi 2002 "Feeding habits and trophic levels of Mediterranean fish"

Karachle & Stergiou 2017 "An update on the feeding habits of fish in the Mediterranean Sea (2002-2015)" odysseaplatform.eu @odysseaplatform

high plasticity (important when balancing the model, usually it needs modifying)

set a functional group to feed on imported material outside of the studied system if

needed (e.g. migratory FGs, seabirds, preys not included in the model)

a weighted average is needed for multi-species groups

be careful with cannibalism (avoid it being more than 0.1. you don't want the

consumption of a group to be higher than its production)

shutterstock.com • 1171752028

Landings / discards (t/km²/year)

🝚 Thermaikos Gulf - Ecopath w	ith Ecosim 6.5.14040.0						th I	Ecosim 6.5.14040.0					
<u> </u>	n Ecos <u>p</u> ace <u>T</u> ools <u>W</u> in	dows <u>H</u> elp					h	Ecospace <u>T</u> ools <u>W</u> ind	lows <u>H</u> el	р			
🗏 🖨 Ecopath 💌 🖗 Ecosim 💌 🏟	Ecospace V Ecotracor V		ers\donna\De	sktop\LINII/FR		n projects	Eco	space V Ecotracor V		sors\donna\D	eskton\UNII/F		ch project
				Sktop (on the En		i projecta					esktop (or the		
Navigator *	📝 🖾 Start 🔛 Basic estima	ates 🛛 😂 Bas	sic input 🏼 😂 🛛	Diet compositi	on 🎏 Defi	nition of f		🖄 Start 🏾 🍃 Basic estima	ites 🏾 🎓 Ba	asic input 🏼 🎽	Diet composi	tion 🏳 🤤 Def	inition of f
✓ Secopath													
V 🖙 Input	0	Trawlers	Purse	Beach	Small scale	T - 4 - 1		0	Trawlers	Purse	Beach	Small scale	T-1-1
	Group name	(t/km²/year)	seiners (t/km	seiners (t/km ²	(t/km²/year)	rotar		Group name	(t/km²)	seiners (t/km	seiners (t/km ²	(t/km²)	rotar
	1 Phytoplankton					0.000	1	Phytoplankton					0.000
Detritus fate	2 Zooplankton					0.000	2	Zooplankton					0.000
Other production	3 Benthic small crustaceans					0.000	3	Benthic small crustaceans					0.000
v ∉ Fisherv	4 Polychaetes					0.000	4	Polychaetes					0.000
Definition of fleets	5 Shrimps	0.0320			0.0590	0.091	5	Shrimps	0.0140			0.00600	0.020
Landings	6 Crabs	0.00300			0.00600	0.009	6	Crabs	0.00100			0.00100	0.002
Discards	7 Benthic invertebrates					0.000	7	Benthic invertebrates	0.00480			0.00350	0.008
Discard mortality rate	8 Octopuses and cuttlefish	0.00824	0.000039	0.000105	0.191	0.200	8	Octopuses and cuttlefish	0.00900			0.0450	0.054
Discard fate	9 Squids	0.01000		0.00100	0.00400	0.015	9	Squids	0.00400				0.004
Gff-vessel price	10 Red mullets	0.00800			0.0310	0.039	10	Red mullets	0.00400			0.00300	0.007
🗔 Non-market price	11 Anglerfish	0.0140			0.00500	0.019	11	Anglerfish	0.00600			0.00100	0.007
> 🔆 Tools	12 Flatfishes	0.00200	0.00200		0.0920	0.096	12	Flatfishes				0.00900	0.009
🗸 🐃 Output	13 Other gadiforms	0.0340			0.0170	0.051	13	Other gadiforms	0.00800			0.00100	0.009
🗔 Basic estimates	14 Hake	0.0170			0.0540	0.071	14	Hake	0.00700			0.00500	0.012
🗔 Key indices	15 Demersal fishes 1		0.00200		0.00800	0.010	15	Demersal fishes 1				0.00600	0.006
> 🐃 Mortality rates	16 Demersal fishes 2	0.0190	0.00500		0.0770	0.101	16	Demersal fishes 2	0.00400			0.00800	0.012
🗔 Consumption	17 Demersal fishes 3	0.00200	0.00400	0.00100	0.0740	0.081	17	Demersal fishes 3	0.00100			0.00800	0.009
> 🐃 Niche overlap	18 Demersal fishes 4	0.00100	0.00300	0.00100	0.0920	0.097	18	Demersal fishes 4				0.01000	0.010
🗔 Electivity	19 Picarels and boque		0.0220	0.00200	0.0170	0.041	19	Picarels and boque		0.00100		0.00200	0.003
🗔 Search rates	20 Sharks	0.00150	0.000500		0.00350	0.005	20	Sharks	0.00100	0.00100		0.00300	0.005
> 🐃 Fishery	21 Rays and skates	0.00700			0.0380	0.045	21	Bays and skates	0.00400	0.00100		0.00200	0.006
> 🐃 Particle size distribution	22 Anchovy	0.00100	0.392	0.00300	0.199	0.595	22	Anchovy	0.00100	0.0180		0.0200	0.038
> 🔆 Tools	23 Sardine	0.00100	0.341	0.0170	0.489	0.848	23	Sardine		0.0160	0.00200	0.0490	0.067
> 🍚 Ecosim	24 Horse mackerels	0.00600	0.0530	0.00200	0.105	0.166	24	Horse mackerels	0.00400	0.00300	0.00200	0.01000	0.017
> Secospace	25 Mackerels		0.0340	0.00100	0.0190	0.054	25	Mackerels	0.00100	0.00200		0.00200	0.004
> 🎢 loois	26 Other small pelagics		0.0860	0.00200	0.320	0 408	26	Other small pelagics		0.00400		0.0310	0.035
	27 Medium pelagics		0.00200		0.0150	0.017	27	Medium pelagics		0.00100		0.00100	0.001
	28 Large pelagics	0.000035	0.00100	0.000082	0.00883	0.010	28	Large pelagios				0.00700	0.007
	29 Loggerbead turtle					0.000	20	Loggerbead turtle				0.00250	0.007
	30 Seabirds					0.000	30	Seahirds				0.00200	0.002
	31 Dolphins					0.000	31	Dolphins				0.000340	0.000
	32 Discards					0.000	32	Discards				0.0000-0	0.000
	33 Detritus					0.000	32	Distanto					0.000
Status Remarks							1						
(derived value selected)													

P/B – production / biomass (year-1)

Turnover rate (high: phytoplankton; low: fish and marine mammals)
P/B = Z = F + M (total mortality rate – fishing plus natural)
F from stock assessment: F = C/B
M from empirical equation (Pauly, 1980)

$$M = K^{0.65} \cdot L_{\infty}^{-0.279} \cdot T^{0.463}$$

K is the growth rate (/year)

 L_{∞} is the asymptotic length (total length, cm) *Tc* is the mean habitat (water) temperature, in °C

weighted averages for each FG

Non-fish FGs: values from other models with adjusted T, literature

Q/B from FishBase Life-history tool

🗧 🔶 C 💽 fishbase.se/popdyn/KeyfactsSummary_1.php?ID=1327&genusname=Mullus&speciesname=surmuletus&fc=332&vstockcode=1345

Values shown below are defaults. Please double-check, replace with better values as appropriate, and 'Recalculate'.

About this page...

Life History Data on *Mullus surmuletus* Surmullet

*Non-fish FGs: values from other models with adjusted T, literature

Pedigree

The **pedigree** of an Ecopath input categorizes the origin a given input (the **type of data** on which it is based), and specifies the likely **uncertainty** associated with the input, i.e. the **reliability** of the data.

Pedigree

The **pedigree** of an Ecopath input categorizes the origin a given input (the **type of data** on which it is based), and specifies the likely **uncertainty** associated with the input, i.e. the **reliability** of the data.

Pedigree

	Diet composition	Definition of fleets 🛛 🤤 La	ndings 😂 Discards	Pedigree			
						<u>S</u> et:	Apply
Δ.	signment						
_						1	
	Group name	Biomass in habitat area	Production / biomass	Consumption / biomass	Diet	Catch	1
1	Phytoplankton						
2	Zooplankton						
3	Benthic small crustaceans						
4	Polychaetes						
5	Shrimps						
6	Crabs						
7	Benthic invertebrates						
8	Octopuses and cuttlefish						
9	Squids						
10	Red mullets						
11	Anglerfish						
12	Flatfishes						
13	Other gadiforms						
14	Hake						
15	Demersal fishes 1						
16	Demersal fishes 2						
17	Demersal fishes 3						
18	Demersal fishes 4						
19	Picarels and bogue						
20	Sharks						
21	Rays and skates						
22	Anchovy						
23	Sardine						
24	Horse mackerels						
25	Mackerels						
26	Other small pelagics						
27	Medium pelagics						
28	Large pelagics						
29	Loggerhead turtle						
30	Seabirds						
31	Dolphins						
32	Discarde						

odysseaplatform.eu |@odysseaplatform

Unassimilated consumption

Thermaikos Gulf - Ecopath with Ecosim 6.5.14040.0

File <u>View Ecopath Ecosim Ecospace Tools Windows</u> <u>H</u>elp

😂 Ecopath 🔻 🥝 Ecosim 🔻 🐨 Ecospace 🔻 🌑 Ecotracer 👻 🛃

Navigator	₽ /	🝃 Basic estimates 🌶 🤤 Bas	ic input	😂 Diet co	ompositio	n 🤤 De	finition of	fleets 😭	Landings	😂 Disca	rds 😓
∽ 🚍 Ecopath	🧆 [Define groups 🛒 Edit mu	lti-stanza								
 A Input Model parameters Basic input 		Group name	Habitat area (fraction)	Biomass in habitat area (t/k	Producti on / biomass	Consum ption / biomass	Ecotroph ic Efficienc	Other mortality	Producti on / consump	Unassim consump	Detritus import (t/km²/ye
Diet composition	1	Phytoplankton	1.000	7.866	117.3						. ,
Detritus fate	2	Zooplankton	1.000	6.100	62.47	186.4				0.400	
Other production	3	Benthic small crustaceans	1.000	1.110	7.686	57.12				0.200	
✓ 🖨 Fishery	4	Polychaetes	1.000	4.808	1.712	13.08				0.600	
Definition of fleets	5	Shrimps	1.000	0.306	3.339	7.896				0.200	
	6	Crabs	1.000	0.412	2.541	5.187				0.200	
Discards	7	Benthic invertebrates	1.000	8.710	1.215	3.434				0.430	
Discard monality rate	8	Octopuses and cuttlefish	1.000	0.392	2.900	5.807				0.200	
	9	Squids	1.000	0.363	2.600	26.47				0.200	
	10	Red mullets	1.000	0.196	1.908	7.192				0.200	
w S Tools	11	Anglerfish	1.000	0.203	1.100	3.777				0.200	
Growth input	12	Flatfishes	1.000	0.107	1.820	8.741				0.200	
	13	Other gadiforms	1.000	0.580	1.450	6.493				0.200	
	14	Hake	1.000	0.400	0.587	3.700				0.200	
✓ ➡ Output	15	Demersal fishes 1	1.000	0.150	2.400	9.306				0.200	
Basic estimates	16	Demersal fishes 2	1.000	0.246	1.600	7.739				0.200	
Key indices	17	Demersal fishes 3	1.000	0.322	1.400	4.592				0.200	
> 🐃 Mortality rates	18	Demersal fishes 4	1.000	0.237	1.900	11.10				0.200	
Consumption	19	Picarels and bogue	1.000	0.663	1.500	8.339				0.200	
> 🐃 Niche overlap	20	Sharks	1.000	0.0710	0.698	4.080				0.200	
🗔 Electivity	21	Rays and skates	1.000	0.141	1.000	3.394				0.200	
Search rates	22	Anchovy	1.000	2.250	1.753	6.693				0.300	
> 🐃 Fishery	23	Sardine	1.000	1.950	1.778	11.67				0.300	
Particle size distribution	24	Horse mackerels	1.000	0.732	1.000	7.315				0.200	
> 🔆 Tools	25	Mackerels	1.000	0.294	1.022	6.448				0.200	
> 🎡 Ecosim	26	Other small pelagics	1.000	1.170	1.400	6.365				0.300	
> 🔂 Ecospace	27	Medium pelagics	1.000	0.250	0.425	3.706				0.200	
> 💥 Iools	28	Large pelagics	1.000	0.0490	0.400	2.529				0.200	
	29	Loggerhead turtle	1.000	0.0200	0.160	2.680				0.200	
	30	Seabirds	1.000	0.00100	4.780	111.6				0.200	
	31	Dolphins	1.000	0.0200	0.0800	13.81				0.200	
	32	Discards	1.000	-		_					0.000
Chattan Damanlar											

Default value of **0.2** for carnivorous fish groups if other estimates are not available (Winberg 1956)

For **herbivores**, the proportion not assimilated may be considerably higher, e.g. up to 0.4 in zooplankton

1: Phytoplankton (Biomass accumulation rate)

The fraction of the food that is not assimilated (it is not physiologically useful), consists of urine and feces and is directed to **detritus**.

odysseaplatform.eu |@odysseaplatform

Ecopath Ecosim Ecospace Tools Windows Help

😂 Ecopath 💌 😂 Ecosim 💌 🥪 Ecospace 💌 🌒 Ecotracer 💌 🛃

Navigator	
Constants	

vigator [‡]	1	Start 😂 Basic estimates	😂 Basic inp	out 😂 D	iet compo	sition 🕻	Definition	on of fleets	😂 Lan	dings 🍃
Ecopath									_	
✓ ➡ Input		Group name	Trophic level	Habitat area (fraction)	Biomass in habitat area (t/k	Biomass (t/km²)	Producti on / biomass	Consum ption / biomass	Ecotroph ic Efficienc	Producti on / consump
Diet composition	1	Phytoplankton	1.000	1.000	7.866	7.866	117.3		0.744	
🗔 Detritus fate	2	Zooplankton	2.250	1.000	6.100	6.100	62.47	186.4	0.764	0.335
Other production	3	Benthic small crustaceans	2.211	1.000	1.110	1.110	7.686	57.12	0.993	0.135
🗸 🔿 Fishery	4	Polychaetes	2.100	1.000	4.808	4.808	1.712	13.08	0.988	0.131
Definition of fleets	5	Shrimps	3.088	1.000	0.306	0.306	3.339	7.896	0.999	0.423
🗔 Landings	6	Crabs	2.966	1.000	0.412	0.412	2.541	5.187	0.997	0.490
Discards	7	Benthic invertebrates	2.053	1.000	8.710	8.710	1.215	3.434	0.995	0.354
Discard mortality rate	8	Octopuses and cuttlefish	3.326	1.000	0.392	0.392	2.900	5.807	1.000	0.499
Discard fate	9	Squids	3.838	1.000	0.363	0.363	2.600	26.47	0.997	0.098
Off-vessel price	10	Red mullets	2.809	1.000	0.196	0.196	1.908	7.192	0.994	0.265
Non-market price	11	Anglerfish	4.182	1.000	0.203	0.203	1.100	3.777	0.211	0.291
✓ ➤ 100IS	12	Flatfishes	4.002	1.000	0.107	0.107	1.820	8.741	0.995	0.208
De dieve e	13	Other gadiforms	3.552	1.000	0.580	0.580	1.450	6.493	1.000	0.223
	14	Hake	4.144	1.000	0.400	0.400	0.587	3.700	0.998	0.159
La Haits	15	Demersal fishes 1	3.144	1.000	0.150	0.150	2.400	9.306	0.995	0.258
Basic estimates	16	Demersal fishes 2	3.657	1.000	0.246	0.246	1.600	7.739	0.996	0.207
Key indices	17	Demersal fishes 3	3.724	1.000	0.322	0.322	1.400	4.592	0.991	0.305
> Mortality rates	18	Demersal fishes 4	3.301	1.000	0.237	0.237	1.900	11.10	0.995	0.171
	19	Picarels and bogue	3.245	1.000	0.663	0.663	1.500	8.339	0.992	0.180
> S Niche overlap	20	Sharks	3.930	1.000	0.0710	0.0710	0.698	4.080	0.988	0.171
Electivity	21	Rays and skates	4.022	1.000	0.141	0.141	1.000	3.394	0.717	0.295
Search rates	22	Anchovy	3.250	1.000	2.250	2.250	1.753	6.693	0.995	0.262
> S Fishery	23	Sardine	3.085	1.000	1.950	1.950	1.778	11.67	0.997	0.152
> 🖘 Particle size distribution	24	Horse mackerels	3.361	1.000	0.732	0.732	1.000	7.315	0.994	0.137
> 🔆 Tools	25	Mackerels	3.489	1.000	0.294	0.294	1.022	6.448	0.994	0.158
Ecosim	26	Other small pelagics	3.220	1.000	1.170	1.170	1.400	6.365	0.997	0.220
Ecospace	27	Medium pelagics	4.191	1.000	0.250	0.250	0.425	3.706	0.257	0.115
R Tools	28	Large pelagics	4.239	1.000	0.0490	0.0490	0.400	2.529	0.864	0.158
	29	Loggerhead turtle	3.088	1.000	0.0200	0.0200	0.160	2.680	0.781	0.060
	30	Seabirds	2.283	1.000	0.00100	0.00100	4.780	111.6	0.000	0.043
	31	Dolphins	4.457	1.000	0.0200	0.0200	0.0800	13.81	0.213	0.006
	32	Discards	1.000	1.000					0.987	
Status 📝 Remarks										

1: Phytoplankton (Biomass accumulation rate

ECOPATH outputs

P/Q typically varies between 0.1 and 0.30

Consumption of most groups is about 3-10 times higher than their production

May be lower for top predators and higher for very small organisms

It "travels well"

EE is the proportion of production that is used in the system (predation or fishing) EE close to 1 usually for preys and commercial species, except for Phytoplankton in bloom (0.5) **1-EE** is "other mortality" Kelp and macro-algae (0.1) Unexploited predators (~0)

Not mass-balanced model

EE < 1.0: The EE can never > 1

It is not possible for more biomass to be passed on to the next trophic level than was originally produced

- Maybe a FG has **too low biomass**
- Maybe the **conversion factors** used are wrong
- Maybe **too much predation** is exerted on a FG
- Maybe a FG is **fished too much**

Look for **big problems initially**, evaluate which parameters are **most uncertain**, change those

Modify the data that has **less quality** (use pedigree)

<u>File View Ecopath Ecosim</u>	Eco	s <u>p</u> ace <u>T</u> ools	<u>W</u> indows	<u>H</u> elp						
🖃 🤤 Ecopath 💌 😔 Ecosim 💌 😒 B	cospa	ace 🔻 🌒 Ecotrac	er 🔻 🛃	C:\Use	rs\donna\l	Desktop\L	UNIVERSIT	Y\Researc	h projects\	PROTON
Navigator 4	6	Start	c estimate	s						
∽ 🝚 Ecopath										1
> & Input < S Output Basic estimates		Group name	Trophic level	Habitat area (fraction)	Biomass in habitat area (t/k	Biomass (t/km²)	Producti on / biomass	Consum ption / biomass	Ecotroph ic Efficienc	Producti on / consum
🗔 Key indices	1	Phytoplankton	1.000	1.000	7.866	7.866	117.3		0.415	
> 🐃 Mortality rates	2	Zooplankton	2.250	1.000	3.560	3.560	59.49	177.5	0.892	0.335
Consumption	3	Benthic small c	2.215	1.000	1.110	1.110	7.320	54.40	0.706	0.135
> 🐃 Niche overlap	4	Polychaetes	2.100	1.000	4.808	4.808	1.630	12.46	0.959	0.131
🗔 Electivity	5	Shrimps	3.092	1.000	0.214	0.214	3.180	7.520	4.107	0.423
🗔 Search rates	6	Crabs	2.967	1.000	0.412	0.412	2.420	4.940	1.833	0.490
> 🐃 Fishery	7	Benthic inverte	2.053	1.000	8.710	8.710	1.150	3.270	0.964	0.352
> Sequence of the size distribution	8	Octopuses and	3.469	1.000	0.247	0.247	2.680	5.300	3.771	0.506
> 🔆 Tools	9	Squids	4.012	1.000	0.363	0.363	2.600	26.47	0.583	0.098
> 🔮 Ecosim > 🌚 Ecospace > 🔆 Tools	10	Red mullets	2.970	1.000	0.196	0.196	0.810	7.308	1.641	0.111
	11	Anglerfish	4.265	1.000	0.475	0.475	0.358	4.173	0.402	0.086
	12	Flatfishes	4.080	1.000	0.142	0.142	1.232	9.619	1.618	0.128
	13	Other gadiform	3.757	1.000	0.580	0.580	0.599	7.092	2.305	0.084
	14	Hake	4.121	1.000	0.377	0.377	0.591	4.000	1.885	0.148
	15	Demersal fishe	3.145	1.000	0.0510	0.0510	3.948	10.21	3.872	0.387
	16	Demersal fishe	3.914	1.000	0.246	0.246	1.641	8.529	1.575	0.192
	17	Demersal fishe	3.846	1.000	0.322	0.322	0.898	4.638	1.657	0.194
	18	Demersal fishe	3.390	1.000	0.224	0.224	1.660	12.29	4.352	0.135
	19	Picarels and bo	3.246	1.000	1.955	1.955	0.774	9.146	0.402	0.085
	20	Sharks	3.947	1.000	0.313	0.313	0.311	4.202	0.766	0.074
	21	Rays and skate	4.058	1.000	0.188	0.188	0.324	3.552	0.616	0.091
	22	Anchovy	3.250	1.000	1.628	1.628	1.986	6.374	2.066	0.312
	23	Sardine	3.086	1.000	1.606	1.606	1.877	11.11	1.275	0.169
	24	Horse mackere	3.354	1.000	0.732	0.732	0.936	7.777	1.253	0.120
	25	Mackerels	3.491	1.000	0.0880	0.0880	1.504	7.034	4.965	0.214
	26	Other small pel	3.227	1.000	0.500	0.500	2.069	9.793	1.367	0.211
	27	Medium pelagi	4.235	1.000	0.250	0.250	0.430	4.828	0.459	0.089
	28	Large pelagics	4.271	1.000	0.0710	0.0710	1.090	4.004	0.969	0.272
	29	Loggerhead tur	3.184	1.000	0.0200	0.0200	0.160	2.680	0.000	0.060
	30	Seabirds	2.396	1.000	0.00100	0.00100	4.780	111.6	0.000	0.043
	31	Dolphins	4.535	1.000	0.0200	0.0200	0.0800	13.81	0.625	0.006
	22	Discordo	1 000	1 000						

Thermaikos Gulf - Ecopath with Ecosim 6.5.14040.0

1: Phytoplankton (Biomass accumulation rate)

ECOPATH outputs

The main trophic flows among the functional groups are illustrated in the output flow diagram where all groups are organized based on their **TLs** and their **habitat** (pelagic or demersal).

Summary statistics and indicators

Parameter	Thermaikos	Units
Sum of all consumption	1386	t km ⁻² yr ⁻¹
Sum of all exports	514	t km ⁻² yr ⁻¹
Sum of all respiratory flows	417	t km ⁻² yr ⁻¹
Sum of all flows into detritus	868	t km ⁻² yr ⁻¹
Total system throughput	3184	t km ⁻² yr ⁻¹
Sum of all production	1350	t km ⁻² yr ⁻¹
Mean trophic level of the catch	3.314	
Calculated total net primary production	923	t km ⁻² yr ⁻¹
Total primary production / total respiration	2.212	
Net system production	506	t km ⁻² yr ⁻¹
Total primary production / total biomass	23	
Total biomass / total throughput	0.013	
Total biomass (excluding detritus)	40	t km ⁻²
System Omnivory Index	0.2	
Ecopath pedigree index	0.534	

Statistics

	Parameter	Thermaikos	Units
Γ	Sum of all consumption	1386	t km ⁻² yr ⁻¹
	Sum of all exports	514	t km ⁻² yr ⁻¹
	Sum of all respiratory flows	417	t km ⁻² yr ⁻¹
	Sum of all flows into detritus	868	t km ⁻² yr ⁻¹
=	Total system throughput	3184	t km ⁻² yr ⁻¹

The total system throughput is the sum of all flows in a system.

It is considered to be an indirect indicator of the size of the food web and is estimated as the sum of four flow components, i.e.

Total consumption + Total export + Total respiration + Total flows to detritus

(Export = commercial fishing)

Total system throughput represents the **'size of the entire system in terms of flow'** (Ulanowicz, 1986).

As such, it is an important parameter for **comparisons of flow networks**.

Statistics

Parameter	Thermaikos	Units
Total primary production / total respiration	2.212	
Net system production	506	t km ⁻² yr ⁻¹
Total primary production / total biomass	23	
Total biomass / total throughput	0.013	

Total primary production / total respiration and biomass: important ratio for description of the **maturity of an ecosystem** (Odum 1971)

In **early developmental stages** of a system, production is expected to exceed respiration, **>1** and biomass accumulates over time, production to biomass **declines**

Fishing causes the bottom complexity as well as the benthos and fish species composition to change from mature to disturbed ecosystems (Watling and Norse, 1998)

Net system production: difference between total primary production and respiration, large in immature systems, close to 0 in mature

System biomass / throughput: decrease to a minimum for the most immature stages of a system, close to 0

Mixed Trophic Impact plot

Impacted group **3enthic small crustaceans** cuttlefis invertebrates rse mackere and ska Other gadifor Phytoplankton Positive Negative Zooplankton Polychaetes mullet sma Anglerfish ackerels mersal ctopuses atfishes chov -oggerh Seahirds Dolphins scard Detritus rawlers Shrimps **Benthic** 86 ach rabs 1: Phytoplankton 2: Zooplankton 3: Benthic small crustaceans 4: Polychaetes 5: Shrimps 6: Crabs 7: Benthic invertebrates 8: Octopuses and cuttlefish 9: Squids 10: Red mullets 11: Anglerfish 12: Flatfishes 13: Other gadiforms 14: Hake 15: Demersal fishes 1 16: Demersal fishes 2 17: Demersal fishes 3 18: Demersal fishes 4 19: Picarels and boque 20: Sharks 21: Rays and skates 22: Anchovy 23: Sardine 24: Horse mackerels 25: Mackerels 26: Other small pelagics 27: Medium pelagics 28: Large pelagics 29: Loggerhead turtle 30: Seabirds 31: Dolphins 32: Discards 33: Detritus 1: Trawlers 2: Purse seiners 3: Beach seiners 4: Small scale

The **relative** direct and indirect **impact** that a hypothetical very **small increase of the biomass** of the impacting groups have on the biomass of the **impacted groups**.

Indirect cascade effects on a prey's prey or competitor can also be revealed.

Impacting group

Mixed Trophic Impact plot

Impacted group Benthic small crustaceans Octopuses and cuttlefish Benthic invertebrates Other small pelagic and bog Horse mackerels Loggerhead turtle Rays and skates Medium pelagics Demersal fishes emersal fishes Demersal fishes emersal fishes Other gadiforms Large pelagics 1: Phytoplankton Purse seiners Beach seiners Positive Negative Red mullets Zooplankton Polychaetes Anglerfish Mackerels Small scale Flatfishes Seabirds Discards Picarels Anchovy 31: Dolphins Detritus Shrimps Sardine Trawlers Sharks Squids Hake Crabs صّ صّ ä ä ċ ä ë ö è 29: ä ö ö ġ ģ \simeq ы ю́ 4 1: Phytoplankton 2: Zooplankton 3: Benthic small crustaceans 4: Polychaetes 5: Shrimps 6: Crabs 7: Benthic invertebrates 8: Octopuses and cuttlefish 9: Squids 10: Red mullets 11: Anglerfish 12: Flatfishes 13: Other gadiforms 14: Hake 15: Demersal fishes 1 16: Demersal fishes 2 17: Demersal fishes 3 18: Demersal fishes 4 19: Picarels and boque 20: Sharks 21: Rays and skates 22: Anchovy 23: Sardine 24: Horse mackerels 25: Mackerels 26: Other small pelagics 27: Medium pelagics 28: Large pelagics 29: Loggerhead turtle 30: Seabirds 31: Dolphins 32: Discards 33: Detritus 1: Trawlers 2: Purse seiners 3: Beach seiners 4: Small scale

Impacts due to **fishing**

Impacting group

Mixed Trophic Impact plot

Keystoneness graph

Keystone groups >0: play an important role in the food-web with relatively low biomass **Dominant** groups: play an important role and have a relative large biomass in the ecosystem

- temporal simulations
- its purpose is not to replace single-species approaches, but to test strategic questions and interactions that can't otherwise be accounted for
- biomass dynamics expressed through a series of differential equations
- The consumption of each FG is expressed according to the "foraging arena" theory (not Lotka-Volterra) in which the prey is divided to available (vulnerable) and not available (invulnerable) to the predator through activities such as foraging and dispersal

how is the biomass of each group in the ecosystem controlled

odysseaplatform.eu |@odysseaplatform prey control

Forcing	(no	gaps	allowed)
---------	-----	------	----------

○ fishing effort

Forcing data

environmental	(T,	chla	etc.)	
---------------	-----	------	-------	--

anomaly (estimated by the software based on the rest of the time series)

Fitting (gaps allowed)	
⊂~biomasses	Historical comparison data
∝catches	

○ fishing effort

- environmental (T, chla etc.)
- anomaly (estimated by the software based on the rest of the time series)

Title	Shrimps	Benthic cephalopods	Anglerfish	Rays & skates	es Anchovy Fleet1 Fleet2 Fle		Fleet3	Fleet4	Fleet5	Shrimps	Crabs	
Pool	8	13	16	28	29	1	2	3	4	5	8	
Code	0	0	0	0	0	3	3	3	3	3	6	
1	1	1	1	1	1	1	1	1	1	1	0.025036	0.00385
2		0.310601833	0.7686661	0.821828391		1.002961	1.011453	1.006749	1.006749	1.171353	0.034132	0.00192
3		0.947906737	1.5371966	1.229175358		0.979211	1.024337	1.020124	1.020124	1.310926	0.047167	0.00478
4	3.99754	0.667255227	0.8858707	1.472265217		1.007436	1.058968	1.008595	1.008595	1.888108	0.084283	0.00810
5	3.83744	0.411822512	0.7446751	1.021596572		0.945306	1.050856	1.077446	1.077446	2.094318	0.108242	0.00204
6	1.98804	0.332080708	0.3273468	0.722878687		0.89284	0.995023	1.098865	1.098865	2.082015	0.115333	0.00177
7	2.20083	0.260085738	0.271549	0.689867645		0.901452	1.067081	1.051024	1.051024	2.006737	0.112125	0.00208
8	3.55084	0.232328753	0.396056	0.664189054		0.918919	0.967822	1.032551	1.032551	2.21983	0.1268	0.00713
9	2.65607	0.278296231	0.133569	0.223133171		0.900953	0.996454	1.093854	1.093854	2.381371	0.126202	0.00135
10						0.924742	0.95573	1.075272	1.075272	2.910369	0.101171	0.0011
11	2.53895	0.845611636	0.3359912	0.377184984	1.642602	0.859365	1.040672	1.038407	1.038407	2.989602	0.148105	0.00203
12	1.68638	0.88735335	0.3506305	0.292742352	0.723162	0.785337	0.967087	1.008452	1.008452	2.646163	0.171776	0.00140
13	1.67488	0.589351589	0.5205981	0.443789969	1.259164	0.828922	1.095455	1.002928	1.002928	2.826303	0.211585	0.00189

1860

Fitting (gaps allowed)

biomasses

catches

rature anomalies relative to 1951-1980 average

2000

-0.6 🖯

-0.8

2020

Applying an environmental **anomaly** function (e.g. on the primary producers) that drives the model

odysseaplatform.eu |@odysseaplatform

Search for the most vulnerable prey-predator interactions

The most vulnerable interactions are modified. The software searches for the best solutions

(with iterations)

•		,			osim (6.5.14040.0					_							
	-				Tool	s Windows Help												
	Number of parameters	Akaike	🔻 🌑 Ecotracer 💌 😾															
	Number of parameters	points	squares	Criteria	ф.	🔏 Start 🤤 Basic estimat	tes 🔏	🕨 Time	series 🥝	Fit to time se	ries 🗸 🥹 Vu	Inerabilities]					
l la	20	C00	204.2	228.0	I Estimate vulnerabilities													
l l'	30	000	304.Z	-336.0		Prev \ predator	2	3	4	5	6	7	8	9	10	11	12	13
						1 Phytoplankton	99009	1.000	61.02	1.030	2.000							
						2 Microzooplankton	1.000	1.000	1.705	1.456								
						3 Mesozooplankton		99009	9900990464	9900990464	496.3							
						4 Macrozooplankton			1.001	9900990464			1.284	2.000	2.000			2.000
						5 Jelatinous plankton				1.382								
						6 Suprabenthos					9900990464		31.45	2.000	2.000			2.000
						7 Polychaetes					9900990464	9900990464	9900990464	1.000	2.000	1.001	160000000	2.000
						8 Shrimps							2.000		1.000			2.000
						9 Crabs								2.000	2.000			2.000
						10 Norway lobster								2.000				2.000
						11 Bivalves & gastropods					9900990464	9900990464	11.66	2.000	2.000	2.000	2.000	1.000
						12 Benthic invert. (no crustacea)					9900990464	9900990464	94.20	2.000	2.000	2.000	1.070	1.000
						13 Benthic cephalopods							2.000		2.000			2.000
				14 Benthopelagic cephalopods							2.000					2.000		
						15 Mullets												
						16 Anglerfish												2.000
						17 Flatfishes							2.000	2.000				2.000
						18 Blue whiting												2.000
			19 Other gadiforms												2.000			
	No. AIC data points: 688					20 Hake												2.000
			21 DemeFish1							2.000	2.000				2.000			
l I n	laration					22 DemeFish2												
						23 DemeFish3								2.000				2.000
l I F	Run completed at 10:50 AM					24 DemeFish4								2.000				2.000
11.	anticompleted at 10.00744					25 BepeFish												
	teration 9, 55 = 364.1966					26 Picarels and Bogue												2.000
H	teration 9, SS = 384.1989		27 Sharks												2.000			
ШB	teration 8 SS = 384 1989					28 Rays & skates												9900990464
116	antian 7 CC - 204 2012					29 Anchovy												
	teration /, 55 = 564.2612					30 Sardine												
	teration 6, SS = 384.2995					31 Horse mackerel												
l I h	teration 5. SS = 384,2996					32 Mackerel												
	teration / SS - 38/ 2996					33 Other Small peragic tisnes												
11 3	000 000 000 000					34 Medium pelagic fish												
1	teration 3, 55 = 388.6408					35 Large pelagic fishes												
l I h	teration 2. SS = 391.0157					36 Loggernead turtie												
	teration 1 SS - 424 8379					37 Sea birds												
11.2						38 Dolphins	00000	1.000	015.4	110.0	1 000	1.000	52410	1.000	1.000	1.000	1 000	
113	bearch started, base 55 = 424.8	38				40 Diseards	99009	1.000	815.4	110.0	2.000	1.000	2,000	2.000	2,000	1.000	1.000	
											2.000		2.000	2.000	2.000			
		Stop	Search															

Running Ecosim

fishing effort scenarios

fishing practices, e.g. selectivity (indirect)

application of management practices (e.g. landing obligation)

scenarios of environmental changes (nutrients, temperature rise)

biomass changes of specific groups (e.g. invasive species)

No fish is an island

Ecopath with Ecosim

- it employs the Ecosim model in a spatial grid of one size cells
- cells are connected through distribution/movements of populations and fishing effort
- the dispersal rate depends on the cell being a "preferred habitat" or not
- high predation risk and lower food intake in non preferred habitats
- fishing effort proportional to cell productivity

Ecospace

Defining and evaluating Marine Protected Areas

Ecospace

Derek A. Roff Professor of Biology UC Riverside, California

"No model is constructed to capture all the intricacies of the real world, for if it did so it would be as difficult to understand as the real world itself and little would be gained"

Creating products and knowledge for the Mediterranean

ARISTOTLE UNIVERSITY OF THESSALONIKI

THANK-YOU

Donna Dimarchopoulou

Aristotle University of Thessaloniki

ddimarch@bio.auth.gr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727277