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1 Executive Summary 

ODYSSEA intends to develop, operate and demonstrate an interoperable and cost-effective platform that 
fully integrates networks of observing and forecasting systems across the Mediterranean basin, 
addressing both the open sea and the coastal zone. 

In the previous deliverables we have outlined the algorithmic development and summarized the different 
stages that each algorithm had attained. This deliverable provides a summary of the efforts in the different 
areas of interest to third parties, based on the user needs identified by ODYSSEA outreach and 
communication efforts. 

As outlined in D7.3 the development process is broken into three parts: 

• identification and specification 

• development and integration 

• validation and maintenance 

with each algorithm running indefinitely through these stages. We have completed the first iteration for 
the first services and the work now consists of adding new algorithms to the process, as well as reiterating 
the stages for the completed algorithms, and adapt them as new user needs arise. 
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2 Introduction 
In ODYSSEA the WP7 deals with the algorithmic processing of data derived from external data sources, 

produced by the downscaled ODYSSEA models and collected by the deployed ODYSSEA sensors. The 

previous reports outlined the input datasets and the beginning of the development and integration efforts. 

In this report we look toward the output, simultaneously validating that the algorithms, already developed 

and integrated, reacting as expected in the platform environment and making sure that the developed 

services answer the needs identified by the ODYSSEA outreach and communication efforts. 

We will also examine in depth the data already made available on the platform and try new and more in-

depth methods to manipulate the data to provide new kinds of information to users in various areas of 

interest. 

The main chapters in this document are: 

• Long term wave power analysis 

• Offshore wind resource assessment 

• Costal erosion assessment 

• Eutrophication  

• Semantic and social network harvesting 

Each chapter outlines the efforts made in that area to bring forth new manipulation of the available data 
in order to respond to a specific user’s need, achieve new forms of information, add some value to the 
data itself and contribute to a deeper understanding of the Mediterranean Sea.  
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3 Long Term Wave Power Analysis 

In the last few decades, a question being asked frequently is “are we in the midst of a catastrophic process 
going through the Earth's climate?” In this section we have examined whether a certain change in the 
nature of the sea wave power can be discerned. 

Research shows that upper-ocean warming, a consequence of anthropogenic global warming, is changing 
the global wave climate, making waves stronger [1]. This identifies wave power as a potentially valuable 
climate change indicator. To that end, we have analyzed the time series of the wave power of the last 25 
years, from 1994 to 2018, at two different points in the Mediterranean. The samples were collected with 
a 3-hourly temporal interval (0:00, 3:00, 6:00, ... , 21:00). 

We looked for whether it was possible to detect an increase or decrease in the wave power, or whether 
over the years, the stability of wave power between consecutive days has changed. We also found that 
probably the number of annual turbulent systems has changed considerably. 

3.1 The Dataset 

The data was taken from the Copernicus site, GLOBAL_REANALYSIS_WAV_001_032 dataset. The first point 
(P1) was measured in the coordinates 34.64583°N; 18.75°E, and the second point (P2) was measured in 
the coordinates 34oN; 29.6oE. From this dataset we taken the VHM0 parameter 
(sea_surface_wave_significant_height) and the VTM10 parameter (sea_surface_wave_mean_ 
period_from_variance_spectral_density_inverse_frequency_moment). 

The formula we have used for calculating the wave power (in J/m): 𝑃 = 0.49 ∗ 𝑉𝐻𝑀02 ∗ 𝑉𝑇𝑀10 

The formula holds in deep waters where the units of 0.49 are [
𝑘𝑤

𝑚3∗𝑠𝑒𝑐
] . The variables VHM0[m  and 

VTM10[s  denote spectral significant wave height (Hs) and spectral moments (-1,0) wave period (𝑇𝑒 =

𝑇−10 =
𝑚−1

𝑚0
, where 𝑚𝑛 is the 𝑚𝑡ℎ spectral moment), respectively. 

Another interesting point of view is the mean of those two point samples, since each point itself can show 
different behavior. 

file:///C:/Users/music/Downloads/WavePowerAnalyze%20(1).html%231
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FIGURE 3.1: THE TWO POINTS OF WHICH THE DATA IS CONSISTED 

The data transfer from the Observatory server to main Marinomica platform has been facilitated by a set 

of utilities and tools, deployed at each model Observatory, ensuring the operation of this task with the 

minimum human involvement. 

3.2 Data Exploration 

To better understand the data, let’s look at several general graphs of the data. 

3.2.1 All Years Graphs 

First, let's look at the full time series: 

 

FIGURE 3.2: FULL TIME SERIES FOR P1, P2 AND MEAN OF P1, P2. 

Since it is a monthly time series and follows a certain repetitive pattern every year, we can plot each year 
as a separate line in the same plot. it will let us compare the year-wise patterns side-by-side. 
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FIGURE 3.3: WAVE POWER BY YEAR (ALL YEARS SIDE BY SIDE) P1, P2 AND MEAN OF P1, P2. 

We can see that, as we would expect, the wave power appears to be drastically stronger in the winter 
months, compared to the summer months. 

3.2.2 Trend and seasonality 

We will try to visualize the trend and how it varies each year using a nice year-wise boxplot. Likewise, we 
will do a month-wise boxplot to visualize the monthly distributions and variability. Also, we will plot some 
statistics by year and by month. 

Boxplots are a standardized way of displaying the distribution of data based on a five-number summary 
(minimum, first quartile (Q1), median, third quartile (Q3) and maximum). 
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median (Q2/50th 

Percentile) 
the middle value of the dataset 

the line that is in the center 

of the box 

first quartile (Q1/25th 

Percentile) 

the middle number between the smallest number (not the 

“minimum”) and the median of the dataset 

the line at the bottom of 

the box 

third quartile (Q3/75th 

Percentile) 

the middle value between the median and the highest value (not the 

“maximum”) of the dataset 

the line at the top of the 

box 

interquartile range (IQR) 25th to the 75th percentile all the range of the box 

“maximum” Q3 + 1.5*IQR 
the line that is above the 

box 

“minimum” Q1 -1.5*IQR 
the line that is below the 

box 

outliers greater then "maximum" or lower than "minimum" the dots 

We will group the data at seasonal intervals and see how the values are distributed within a given year or 
month and how it compares over time. 
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FIGURE 3.4: YEAR BOX PLOT FOR P1, P2 AND MEAN OF P1, P2. 

In the course of exploring the preliminary data in a yearly manner, no visible trend was found. Therefore, 
we will explore further with more versatile tools in the next part. 

3.2.3 Monthly Breakdown 

As we saw before, those graphs show us the month-wise distribution evident. As we have seen earlier, in 
the winter months the wave power is significantly higher from the summer months with the peak in 
January. 

3.3 Data Analysis 

Any time series may be split into the following components: (Base Level +) Trend + Seasonality + Error 
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• Trend: how things are changing in the long-term 

• Seasonality: how things change within a given period e.g. a year, month, week, day 

• Error: activity not explained by the trend or the seasonal value 

A trend is observed when there is an increasing or decreasing slope observed in the time series. Whereas 
seasonality is observed when there is a distinct repeated pattern observed between regular intervals due 
to seasonal factors. It could be because of the month of the year, the day of the month, weekdays, or even 
an hour of the day. 

As discussed in the previous part, we can clearly observe the annual seasonality of the data. Our main 
challenge is to eliminate the seasonal effect of the data and see if we can detect an obvious trend and 
discover what is the relationship between the trend, seasonality, and the error (noise). 

3.3.1 Additive and multiplicative 

Depending on the nature of the trend and seasonality, a time series can be modeled as an additive or 
multiplicative, wherein, each observation in the series can be expressed as either a sum or a product of 
the components: 

• Additive time series: Value=BaseLevel+Trend+Seasonality+Error 

• Multiplicative Time Series: Value=BaseLevel∗Trend∗Seasonality∗Error 

In a multiplicative time-series, the components multiply together to compose time series. If you have an 
"increasing" trend, the amplitude of seasonal activity increases. Everything becomes more exaggerated. 

In an additive time-series, the components add together to build the time series. If you have an 
"increasing" trend, you still see roughly the same size peaks and troughs throughout the time series. This 
is often seen in indexed time series, where the absolute value is growing but changes stay relative. 

We can have a time series that is somewhere in-between the two, but because we are interested in 
attaining a quick classification, we won’t be handling this complication here. 

The trend component of a time series is identified using a moving average filter. Since there are 365 days 
in a year, we need to use a moving average filter of length 365 × 8 (samples per day). This means that at 
each point we want to average the 182 steps behind and 182 steps in front of the position we are 
calculating an average value for. 

After estimating the trend by applying a convolution filter to the data, the trend is then removed from the 
series and the average of this de-trended series for each period is the returned seasonal component. 

In both of the models, we can see the obvious seasonality, but the trend does not seem clear. 

As the error has a more random distribution in the Multiplicative Decompose than in the Addictive 
Decompose, we can say that the wave power time series has a multiplicative nature. 

3.3.2 Linear regression 

We can do a linear regression over all the data, this will give us a broader perspective of the data. 

https://en.wikipedia.org/wiki/Linear_regression


ODYSSEA Deliverable No. 7.4 

 17 

 

FIGURE 3.5: LINEAR REGRESSION, FULL TIMESERIES P1, P2 AND MEAN OF P1, P2. 

We can see that if we try to get the most profitable linear function over all samples, we get an increasing 
line with a positive coefficient. 

The "coef" here represents the coefficient of the linear line of wave power, and the "error" is the linear 
regression mean square error (MSE). 

Here we can see that the coefficient is always positive, and for the mean between P1 and P2 we see the 
greatest coefficient, but also the greatest error. 

Positive coefficient means that the linear regression found has an "increasing" trend. 

3.3.2.1 Broken linear regression 

In order to prevent a finer profit, now we allow breaking the linear function into two different functions. 
it will give us a better view in case the trend has changed over the years. 
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FIGURE 3.6: BROKEN LINEAR REGRESSION OVER THE WHOLE PERIOD AT DIFFERENT BREAKPOINTS AND CORRESPONDING 

COEFFICIENTS 

These graphs show us that when we split the data into two different time series, we get higher coefficients 
that illustrate a significant increase in the wave power over the years. 

If we look at P2, when the "split" year is 2005, we can see the coefficients of the two linear functions is 
more than 0.07. 

3.3.3 Anomaly detection 

In this part, we will try to identify other trends of the wave power time series from increasing or decreasing. 

3.3.4 Difference from the previous day 

The first try will be to see if each day is different from the previous one. It will point to the abnormal 
behavior of the system. 
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Let's start with a simple graph that shows the difference over all years. it will not be an informative one, 
but only for a graphical feeling. 

 

FIGURE 3.7: DIFFERENCE FROM PREV. DAY, MEAN P1, P2. 

Another graph we can show is the Lag Scatter graph. This graph will indicate the relationship between each 
day. The X-axis is the value of the current day sample, and the Y-axis is the value that belongs to the 
following day. 

 

FIGURE 3.8: LAG SCATTER MEAN P1, P2. 
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To get a more informative graph we will take the average of the L2 distance from every 2 days in every 
year. This, will firstly will ignore the sign of the difference (positive/negative), and secondly, it will 
emphasize in the difference in relation to its size. 

 

From this graph, we do not see any significant trend of abnormality over the years. 

Another question we can ask is whether a trend can be seen in the number of days that their minimum 
sample belongs to the top decile of the wave power samples, for each year. Afterwards we can ask about 
the top percentage and the top thousandth. 

 

FIGURE 3.9: DAYS IN THE TOP DECILE, TOP PERCENTAGE AND TOP THOUSANDTH MEAN OF P1, P2 

All over the datasets, we cannot see any significant trend, no matter if we look at the top decile, top 
percentage, or top thousandth.  
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3.3.5 Fourier transform 

Another way to analyze the data will be by using the Fast Fourier Transform. The Fast Fourier Transform is 
a mathematical transform that decomposes functions depending on space or time into functions 
depending on spatial or temporal frequency, and in our case, it will convert the data point of view from 
time units to frequency units. 

As we saw, the yearly seasonality of the data is very high and prevents us to identify the trend that maybe 
hide behind the seasonality or another seasonality of the data. We will try to identify the accurate 
seasonality and eliminate it, and maybe then we will see a significant trend or other seasonal trend. 

First, we will simply apply the Fast Fourier Transform on the data and check the frequency graphs. We will 
use the FFT formula (Fast Fourier Transform). 

 

FIGURE 3.10: FFT MEAN OF P1, P2. 

As we expected, we see the obvious peak at "1 year", and a smaller peak at the "2 years" (but is only a 
side effect of the annual frequency). 

From here we cannot identify another peak that can represent significant seasonality. 

3.3.5.1 Eliminate the annual frequency 

Now, we will eliminate the annual frequency by reducing the high score of the result of FFT around the 
peak and then apply the inverse function (IFFT) to get again the data as a time series. Then, we will apply 
again the FFT to see if there are more frequencies we missed earlier. Also, we will calculate the sliding 
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window average, like we did when we started to look at the trend and seasonality of the data. Then we 
will compare it to the sliding window average of the original data. 

 

FIGURE 3.11: FFT, IFFT, YEAR AVERAGE AFTER ELIMINATING YEAR FREQUENCY, MEAN P1, P2. 

The results for these actions show that the elimination of the annual frequency didn't affect the rolling 
window average of P2, compared to the effect on P1. 

3.3.5.2 Fast Fourier Transform on the filtered data 

In the last stage, we will try to apply the FFT on the data after it was filtered with the sliding window, with 
and without removing the annual frequency produced with the FFT+IFFT. 

 

FIGURE 3.12: LINEAR REGRESSION ROLLING WINDOW AVERAGE, ELIMINATING YEAR FREQUENCY, COMBINED. 

 
To sum it up, we saw 3 kinds of linear regression: firstly the one applied directly on the data, secondly that 

applied on the rolling window average, and thirdly that applied after removing the annual frequency with 

FFT+IFFT. Finally, there is the combination of removing the annual frequency and then applying a rolling 

window average. 
 

The coefficients are: 
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Attempt First Two Third Fourth 

P1 0.042 0.039 0.044 0.047 

P2 0.016 0.012 0.017 0.017 

Mean of P1&P2 0.050 0.045 0.055 0.057 

It is clear that the elimination of the annual frequency exposes more than the slight increase of the wave 
power over the years, since the two last attempts show greater coefficients compared to the first two, and 
they are the attempts that include this elimination. 

3.4 Conclusion 

In this data analysis we tried to explore the presence of trend in the wave power time-series at two 
locations in the Mediterranean Sea. As explained before, it can indicate climate change and their side 
effect on sea levels and wave power. We saw the obvious presence of annual seasonality in the wave 
power and we attempted to eliminate it in order to exploit the trend. We explored the data by using the 
following techniques: sliding window average, linear regression, FFT + IFFT, and more. 

In the first attempts, only the linear regression showed an increasing trend of the wave power over the 
years. Using the other tools, we didn't find any evidence of trend. Only in the last stage, we saw that if we 
eliminate the annual frequency from the data, we can expose the slight increasing trend that the linear 
regression shows better. 
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4 Wind Resource Assessment 

4.1 Introduction 

Through the European Green Deal, the European Union (EU) has set the target to reach total 
decarbonization and achieve energy efficiency for its members by the year 2050 (EU, 2019). To achieve 
this ambitious goal, the power production sector should follow the Clean Energy Transition pathway, with 
the renewable energy sources being at the epicenter of such conversion. In this gradually changing energy 
mix, the offshore wind industry is expected to play a significant role, experiencing a considerable increase 
in the coming decades (IRENA, 2021; Global Wind Energy Council, 2020). The EU plans to install in all 
European Sea at least 240 gigawatts (GW) of global offshore wind power capacity by 2050 (European 
Parliamentary Research Service, 2020). Current developments illustrate the exponential growth in 
offshore wind installations, i.e., from 1% of annual capacity additions in global wind installations in 2009, 
the offshore wind grew to over 10% in 2019 (Global Wind Energy Council, 2020). 

Technological progress, recent developments in floating technologies and significant cost reductions, in 
conjunction with the local, low level and controllable environmental impacts, appear the main factors 
driving the offshore wind energy transformation into a safe and commercially viable form of clean power 
generation (Aslan, 2020). In any case, the total offshore installations reached 29.1 GW by the end of 2019, 
representing only 5% of total global wind capacity, while generating barely 0.3 % of global electricity 
production. In the EU, approximately 10 million households are now being served by offshore wind energy. 
In the U.S., the first commercial Offshore Wind Farm (OWF) started its operation in December 2016. 
However, until to date development activity remains impressively high, and sixteen active commercial 
leases for offshore wind development have been procured (American Clean Power Association, 2021). In 
Southeast Asia, countries like China, Japan and Taiwan lead the market, with China surpassing the 1 GW 
in annual offshore wind installation (Global Wind Energy Council, 2020). 

The above indicate the enormous potential for offshore wind capacity growth. On this account, a large 
amount of new OWFs will be designed, installed and become operational, especially in Europe, since the 
European Commission (EC) forecasts that the total offshore wind installations will range between 240 and 
450 GW by 2050 (European Parliamentary Research Service, 2020). 

Although all OWFs are concentrated in the North and the Irish Seas, a clear tendency from the private 
sector to harvest the Mediterranean wind power potential is also seen. A 30 MW wind farm comprised of 
10 monopole wind turbines is expected to be installed in the Apulia region, southern Italy, as the first 
Mediterranean offshore wind project to be implemented. Even though 1 GW of offshore wind power is 
equivalent to emissions of 3.5 MT CO2 (Carbon dioxide), several technological, administrative, legislative, 
environmental, socio-economic, and financial barriers exist to develop OWF projects, summarized by 
Soukissian et al. (2017). The Geographic Information System (GIS) mapping of offshore marine and 
maritime uses could assist the selection of proper location and placement of the turbines (Saleous et al., 
2016). 

The most crucial suitability selection criterion for wind farm siting, the wind resource availability (Díaz et 
al., 2018), in conjunction with the presence of a wide continental shelf, ensuring relatively shallow depths 
and the appropriate distance from shore (Latinopoulos and Kechagia, 2016), maybe met over the Thracian 
Sea, in the Northern Aegean Sea. Several investigators have assessed the wind power potential in the 
broader area, especially in Çanakkale (Aslan, 2020) and Imvros (Satir et al., 2018), the Samothraki Island 
(Majidi Nezhad, 2021), and the whole Aegean Sea (Bagiorgas, 2012). Most studies utilize data from 
meteorological stations (Aslan, 2020; Satir et al., 2018). Bagiorgas et al. (2012) used wind data from 
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offshore buoys. Soukissian et al. (2017) downscaled the European Centre for Medium-Range Weather 
Forecasts (ECMWF) reanalysis data, using a high-resolution meteorological model (15-years period, 0.10° 
× 0.10°) validated by offshore buoy data, while Majidi Nezhad et al. (2021) utilized the ERA-Interim 
reanalysis dataset (40 years period, mean monthly data). 

In ODYSSEA we utilized the gridded 6-hourly wind data collected from ASCAT L2b scatterometer on-board 
of METOP satellites, combined with the ECMWF ERA-Interim atmospheric reanalysis, as provided by 
Copernicus Marine Environmental Monitoring Service (CMEMS), in order to assess the offshore wind 
power potential over the whole Thracian Sea and the Lemnos Plateau. This is an area of significant interest 
for wind offshore energy development, especially along the NNE-SSW axis following the wind exiting from 
the Dardanelles Straits (Zafeiratou et al., 2016; Konstantinidis et al., 2014). 

Scatterometer data have been widely used in literature for large-scale wind resource assessments, filling 
the gap in the absence of offshore meteorological stations, while providing continuous, systematic, long-
term, relatively-accurate wind data. However, data reliability suffers from low pixel resolution, together 
with errors related to sensor malfunctioning, wind retrieval algorithm, rain contamination, land 
contamination, etc. (Arun Kumar et al., 2019). Several global and regional wind resource assessment 
studies exist using scatterometer data, mostly using QuickSCAT (e.g., Pimenta et al., (2008) for offshore SE 
Brazil; Mostafaeipour et al., (2010) for Persian Gulf and Gulf of Oman; Karamanis et al. (2011) for Ionian 
Sea and Fuverik et al. (2011) for the whole Mediterranean Sea). To minimize errors induced by the above 
factors, recent studies explore offshore wind resources utilizing multiplatform datasets, like QuickSCAT, 
rapidSCAT, METOP-A and METOP-B, OCEANSAT-2 and others (Young et al., 2020). 

4.2 Algorithm Description for Wind Resource Assessment  

A series of algorithms and tools were developed in R and Python programming languages by DUTH. These 
algorithms perform the following tasks: 

1. Provide the geographical boundaries and time period and retrieve the scatterometer data from 
the CMEMS platform. 

2. Average the 6-hourly wind data per grid point into daily mean values. 
3. Provide the WMO code for each meteorological station operating within the study area and the 

retrieve the daily-mean meteorological data from the in-situ station. 
4. Merge the scatterometer data and the wind speed and direction data for the same time period 

into a single data frame. 
5. Compare the scatterometer data to the in-situ wind speed and direction values; Make scatterplots; 

Compute the values of statistical parameters (Bias, RMSD, STD, correlation coefficient, slope).  
6. Plot the time-series daily and mean-monthly wind speed scatterometer data per grid point. 
7. Using the scatterometer data, establish the wind speed profile, i.e., compute the wind speed at 

the wind turbine hub height based on the 10 m wind speed. 
8. Create a metmast object with all wind profile data per grid point. 
9. Calculate the frequency and the mean wind speed per wind direction sector, using 16 sectors; 

store results in an Excel file named “i_processednew” (i is the grid point number); store the 
frequency table into the Excel worksheet named “frequency”. 

10. Calculate the summary statistics per grid point (min, Q1, median, mean, Q3, max, skewness, 
kurtosis); store all statistical parameters into the Excel worksheet named “summary”. 

11. Plot the frequency rose per grid point; store the frequency rose into the working directory. 
12. Calculate the monthly-mean values of wind speed per grid point; store all results into the Excel 

worksheet “monthly”. 
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13. Plot the monthly frequency roses and store graphs into the working directory. 
14. Calculate the modelled Weibull parameters being fitted on the frequency distribution of wind 

speed data per grid point; store the extracted Weibull parameters per direction into the Excel 
worksheet named “Weibull”. 

15. Calculate the total wind energy content (all values in kWh/m2/yr) per direction; store all energy 
values into the Excel worksheet named “Energy”. 

16. Calculate the modelled wind profile per wind direction and per grid point; store results into the 
Excel worksheet named “Profile”. 

17. Import the wind turbine power curve (e.g., Siemens_SWT-2.3MW-93m, Enercon_E126_7.5MW). 
18. Based on the selected wind turbine, calculate the Annual Wind Energy Production (in MWh/yr) 

per directional bin; store results into the Excel worksheet named: “AnnualEnergyProduction”.  
19. Plot the AEP wind rose; store the rose into the working directory. 
20. Estimate the wind energy capacity factor; store the results into the Excel worksheet named 

“CapacityFactor”.  
21. Calculate the total wind energy content per directional bin based on the Weibull data (all values 

in kWh/m2/yr); store the wind energy content results into the Excel worksheet named 
“EnergyTotal”. 

22. Transform daily values into monthly; apply a linear model on monthly time-series. 
23. Subset the daily data to process wind speed within a certain directional window (e.g., from 45 to 

75 degrees); apply a Weibull model on the frequency distribution and extract the model 
parameters. 

24. Using the Weibull model parameters, estimate the cumulative probability of an event, e.g., the 
probability to obtain wind higher than 30 m/sec. 

4.3 Testing the Algorithm in Thracian Sea 

4.3.1 Wind Scatterometer Data Retrieval and Description 

The 6-hourly data of wind speed (eastings and northings) measured 10 m above sea level with a spatial 
resolution of 0.25° × 0.25° were retrieved from the Copernicus Marine Environmental Monitoring Service 
(CMEMS). The data product used was encoded as WIND_GLO_WIND_L4_REP_OBSERVATIONS_012_006 

(http://marine.copernicus.eu/ documents/PUM/CMEMS-WIND-PUM-012-006.pdf, accessed on 
26/4/2021), referring to a set of time-series comprised of level 4 reprocessed hindcasted wind 
observations, assimilated on a global ocean model. Data were estimated from the global wind fields 
derived from ASCAT scatterometers on-board METOP-A and METOP-B satellites, combined with the 
ECMWF ERA-Interim atmospheric reanalysis.  

The dataset consists of six meteorological variables: the wind speed, the zonal and meridional wind 
components, wind stress amplitudes, and the associated components. The present analysis covered the 
period from January 2011 to December 2019. The resulting fields were estimated on a daily and monthly 
basis, as equivalent neutral-stability 10-m winds, having spatial resolutions of 0.25° in longitude and 
latitude over the study area (Figure 4.1). 

http://marine.copernicus.eu/
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FIGURE 4.1: STUDY AREA MAP AND CMEMS GRID DISCRETIZATION. 

4.3.2 Wind Scatterometer Data Quality Control  

In total 56, grid points were analyzed, while in-situ daily mean wind data were retrieved for the above 
defined period from the World Meteorological Organization (WMO) stations located at Lemnos Airport 
and Chrisoupolis Airport (Hellenic Meteorological Service, Figure 4.1). These data were used to assess the 
consistency of the CMEMS remotely-sensed wind dataset in the study area. 

A set of statistical parameters were used to test the quality of CMEMS scatterometer datasets. These 
include the difference between temporal means (defined as the bias) and the Root Mean Square 
Difference (RMSD) between the in-situ (considered as ground-truth) and the satellite data products, the 
scalar (r) and the regression coefficient slope (bS). A similar analysis was also performed by Bentamy et al. 
(2021) between CMEMS and offshore wind data from buoys in California, Canary and Benguela zones. 
These statistical measures are estimated as: 

 

Bias X Y= −  (1) 

2( )RMSD X Y= −  (2) 

( )
2

STD X Y X Y= − − −  (3) 
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where X is the wind speed measured by the meteorological station and Y the CMEMS wind speed. 

 

FIGURE 4.2: DENSITY PLOTS HISTOGRAMS OF CMEMS WIND SPEED DATA AGAINST WIND DATA FROM ON-SITE STATIONS IN, 
(A) CHRISOUPOLIS AIRPORT, (B) LEMNOS AIRPORT. DASHED LINE REPRESENTS THE PERFECT MATCH LINE, RED LINE THE 

LINEAR REGRESSION MODEL FITTED ON THE SCATTERED DATA AND THE LIGHT RED AREA THE 95% CONFIDENCE INTERVAL. 

The intercomparison of the satellite-derived wind data products against “ground-truth” data collected 
from meteorological stations leads to the assessment of regional accuracy in the satellite wind analysis. 
Unfortunately, offshore buoy data were not available. Thus, comparisons were made against land-based 
stations of low altitude and in proximity to the shore, on a daily-mean basis. Figure 4.2(a, b) illustrate the 
scatter and fitted line plots between the 10-m wind speed retrieved from CMEMS (grid points 45 and 2) 
and the wind data collected from the Lemnos and Chrisoupolis meteorological stations, respectively. 

These figures illustrate the rather good correlation with slight over-estimation of CMEMS wind speed data 
at the open Thracian Sea area (Lemnos: n = 3,287; bias: -1.35; RMSD = 2.43; STD = 2.02; ρ = 0.76; bS = 1.31), 
and a moderate overestimation at the Thracian coastal zone (Chrisoupolis: n = 1825; bias: -1.25; RMSD = 
2.33; STD = 1.97; ρ = 0.50; bS = 1.59), in relation to the in-situ meteorological datasets. In Lemnos, 
agreement is higher at high wind speeds (15-20 m/s and > 20 m/s, bias: -1.03; RMSD = 1.76; STD = 1.37; ρ 
= 0.78; bS = 1.02). Regression equations for both areas were defined, as: 

 

CMEMS scatterometer data = 1.011 × Meteorological station data + 1.230 (6) 

for Chrisoupolis airport, and 

CMEMS scatterometer data = 0.973 × Meteorological station data + 1.463 (7) 

for Lemnos airport. 
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Errors and biases are attributed to the coarse resolution of data product, exhibiting the tendency of 
satellite-derived ASCAT data to overestimate offshore winds (Carvalho et al., 2017). Similar findings were 
also reported by Alvarez et al. (2014), showing that similar satellite data, like QuikSCAT, CCMP and CFSR 
datasets overestimated the wind, especially at high wind speeds (>4 m/s). 

4.3.3 Descriptive Wind Statistics per Sub-Area 

To be able to analyze the wind data at hub level (93 m) and provide analytical descriptive statistics, data 
from grid points were spatially-aggregated according to the main physiographic units of the study area. 
Table 1 presents the summary values for these sub-areas. Results indicate that along the Thracian Sea 
continental shelf, a gradient in wind speed values exists, with higher mean, median and quartile values 
being exhibited towards the Eastern Thracian Sea. Further, the highest offshore wind statis-tical 
parameters are shown in Lemnos Plateau and the Dardanelles area; although the maximum wind speed is 
lower than that in the West Thracian Sea. In all areas data are positively skewed, highly skewed in the west 
and central Thracian Sea and in Mt Athos (skewness > +5), characterized by increased maximum speeds 
under extreme events. Leptokurtic curves prevail over the Thracian Sea and Mt Athos area (kurtosis ~ 1.3), 
and mesokurtic at the Lemnos Plateau and the Dardanelles. 

TABLE 4.1: DESCRIPTIVE WIND STATISTICS [IN M/S] AT HUB HEIGHT (93 M), PER STUDY SUB-AREA. 

Sub-Area Q1 Median Mean Q3 Max 

West Thracian Sea [7,8,9,17,18,19] 2.16 3.65 4.37 5.86 46.88 
Central Thracian Sea [10-13,20-23] 2.45 4.14 4.90 6.62 35.19 
East Thracian Sea [14,15,16,24-29] 3.17 5.32 6.05 8.25 29.66 

Lemnos Plateau [43-46,52-54] 3.60 6.20 6.99 9.57 32.72 
Dardanelles’ zone of Influence 

[47,48,49,55,56] 
3.82 6.48 7.15 9.81 29.30 

Siggitikos Gulf & Mt Athos [30-33,41] 2.86 4.88 5.82 7.89 31.73 

 

An indicative time-series diagram illustrating the 6-hourly wind speed variability in Lemnos Plateau (grid 
point 46), at the hub height, is shown in Figure 4.3. Winds under extreme stormy conditions exceed the 
limit of 20 m/s, originating mainly from the Dardanelles, affecting the northern part of the Aegean Sea. 
Data exhibit seasonality showing higher winter values, with regular incidents exceeding 20 m/s. Mean 
monthly values indicate that the seasonal component oscillates with an amplitude of 6 m/s and reveals a 
slightly upward trend (~0.008 m/s), over the years examined. 
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FIGURE 4.3: 6-HOURLY TIME SERIES (BLUE LINE) AND MEAN-MONTHLY TIME-SERIES (RED LINE) OF WIND SPEED AT HUB 

HEIGHT IN LEMNOS PLATEAU (GRID POINT 46). 

The wind speed exhibits intra-annual variability with higher values in winter, especially in February, and 
significantly lower in spring and summer (April to July). A representative boxplot diagram of monthly-mean 
wind speed values at the hub level (93 m) at point 46 (Lemnos Plateau) is shown in Figure 4.4. 

 

FIGURE 4.4: BOXPLOTS FOR MONTHLY WIND SPEED VALUES AT HUB HEIGHT IN LEMNOS PLATEAU (POINT 46). 

The spatial variability of frequency distributions in daily-mean wind speeds, per wind directional sector, 
are shown in Figure 4.5. It is apparent that NE winds prevail in the study area, followed by ENE at the 
nearshore parts of the Thracian Sea and Mt Athos, and by NNE winds at the offshore Thracian Sea, Lemnos 
Plateau and Dardanelles. Wind speeds and frequencies per directional bin are more dispersed in the West 
and Central Thracian Sea and Mt Athos area, with mean wind speeds of 5.6 m/s, 6.0 m/s and 7.5 m/s 
(~30%, 36% and 35%) from NE and ENE directions, respectively. 

Eastwards and offshore, wind speeds are significantly higher, of higher frequency and appear confined 
along the NE direction, as in point 46 (Lemnos Plateau), having a mean NE wind speed of 9.5 m/s and 33% 
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frequency of occurrence. This is attributed to the impact of orographic effects on the cyclonic synoptic 
circulation of surface wind field over the Black Sea and the funneling effect along the Turkish Straits. In 
parallel, these offshore points illustrate the influence of moderately strong S winds (~7.5 m/s, 8%). 

 

FIGURE 4.5: WIND FREQUENCY ROSES AT HUB HEIGHT OVER THE STUDY AREA. 

4.3.4 Spatial Variability in Weibull Fitting Function Parameters 

To reach a clear view of the available wind potential of an area, we may not rely only on the description of 
the instantaneous and mean wind speeds. The statistical parameters k and A of the fitted Weibull 
probability density function will provide a better and comparable to other areas understanding of wind 
dynamics. 

Several probability density functions are available in the literature to be fitted on the distributions 
representing the wind speed frequency curve per directional sector for the prediction of randomly 
distributed wind speed data. The Weibull probability density function depicts an acceptable accuracy level 
in numerous wind power studies worldwide, expressed mathematically as: 

1

( )

k
bWk

Ab
b

Wk
f W e

A A

−  
− 
  

=  
 

 (8) 

Where f(W) is the frequency of occurrence of wind speed W, A is the scale parameter (measure for the 
wind speed) and k is the shape parameter (description of the shape of the distribution) per directional bin. 
The Weibull distribution parameters were estimated by: 
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where Wb is the mean wind speed per directional bin b, n is the number of bins, f(Wb) the frequency for 
wind speed ranging within bin b and f(Wb)≥0 is the probability for wind speed equal to or exceeding zero. 
To estimate the Weibull distribution parameters k and A, the analysis was performed in R programming 
language (fitdistrplus package), using the maximum likelihood estimation method per directional bin. 

The probability of occurrence, and therefore the fraction of time for each wind speed range, per directional 
sector, prevailing in the study area, maybe derived through this function. Table 2 presents the annual 
variation in Weibull parameters per directional bin, for all study area sub-regions. For all bins, the Weibull 
shape parameter k varies between 1.40 in the West Thracian Sea and 1.73 in the Dardanelles region of 
influence, with a mean value of 1.61, throughout the gridded data, at hub level (z = 93 m). At the nearshore 
Thracian Sea area, k-mean values range from 1.39 from the N direction to 1.63 from the WSW direction. 

In terms of k-distribution over the various directional bins, higher values occur at the NE direction in the 
East Thracian Sea, Lemnos Plateau, Dardanelles and Mt Athos areas (ranging from 1.88 to 2.45), at the 
ENE direction in the central Thracian Sea (k = 2.00) and the E direction in western Thracian part (k = 1.88). 
In parallel, the Weibull scale parameter (A) exhibits a gradual increase from the western nearshore zone 
(4.79 m/s) towards the east (6.77 m/s) and then offshore, until Lemnos Plateau (7.81 m/s) and the highly 
dynamic Dardanelles area (8.02 m/s). The NE direction displays the higher A-values in all sub-areas, except 
for the East Thracian Sea, where the NNE direction prevails. The highest NE-bin A-value is seen at the 
Lemnos area (10.42 m/s), followed by the Dardanelles region (10.39 m/s). 

TABLE 4.2: WEIBULL PROBABILITY DENSITY FUNCTION PARAMETERS, PER DIRECTIONAL BIN, AT HUB HEIGHT FOR ALL SUB-
AREAS. 

Sub-Areas/ 
Directional 
Bins 

West Thracian 
Sea 

Central Thracian 
Sea 

East Thracian 
Sea 

Lemnos Plateau Dardanelles Siggitikos/Mt 
Athos 

k A 
(m/s) 

k A 
(m/s) 

K A 
(m/s) 

k A 
(m/s) 

k A 
(m/s) 

k A 
(m/s) 

N 1.38 4.71 1.45 4.67 1.35 5.08 1.42 5.03 1.47 5.05 1.46 5.41 
NNE 1.50 5.87 1.61 7.08 1.79 8.79 1.71 8.80 1.82 9.16 1.56 7.49 
NE 1.75 6.84 1.93 7.50 2.27 8.75 2.23 10.42 2.45 10.39 1.88 9.23 
ENE 1.74 5.70 2.00 6.00 2.17 6.57 1.87 7.61 2.02 7.25 1.77 7.58 
E 1.88 4.45 1.94 4.47 1.98 4.38 1.65 4.99 1.81 4.96 1.71 5.28 
ESE 1.21 3.42 1.65 3.49 1.76 3.54 1.57 4.36 1.70 4.48 1.50 4.29 
SE 1.50 3.32 1.28 3.24 1.60 3.81 1.46 4.75 1.55 4.56 1.51 4.23 
SSE 1.48 3.62 1.38 3.79 1.51 4.38 1.57 5.89 1.65 5.76 1.46 4.81 
S 1.27 4.53 1.35 5.40 1.56 6.70 1.67 8.13 1.75 8.42 1.40 6.13 
SSW 1.44 4.02 1.53 5.26 1.68 6.74 1.73 7.43 1.79 7.68 1.51 5.64 
SW 1.31 3.35 1.59 3.99 1.89 5.01 1.84 5.69 1.82 5.86 1.61 4.79 
WSW 1.61 3.63 1.76 3.74 1.60 4.14 1.60 4.95 1.52 4.57 1.62 4.75 
W 1.77 3.24 1.68 3.07 1.66 3.36 1.46 3.84 1.40 3.37 1.69 4.31 
WNW 1.51 3.42 1.60 3.20 1.52 3.17 1.43 3.55 1.38 3.41 1.59 4.31 
NW 1.45 3.87 1.40 3.33 1.34 3.31 1.31 3.95 1.19 3.41 1.40 4.68 
NNW 1.50 4.09 1.29 3.29 1.30 3.50 1.56 3.93 1.59 3.54 1.48 4.81 
all 1.40 4.79 1.48 5.42 1.64 6.77 1.63 7.81 1.73 8.02 1.47 6.44 

 

The Weibull probability density function, fitted on the NE wind speed data, at a specific grid point located 
at Lemnos Plateau, together with the cumulative probability density function and the relevant q-q and p-
p plots are shown in Figure 4.6. Based on this analysis and the wind turbine power curve it can be deduced 
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that the probability of wind speed from the NE direction within the turbine operational (> 5 m/s) window 
is 79.81%. 

 

FIGURE 4.6: (A) WEIBULL PROBABILITY DENSITY MODEL, (B) Q-Q PLOT, (C) CUMULATIVE DENSITY FUNCTION, AND (D) P-
P PLOT, AS FITTED ON THE NE WIND SPEED DATA AT HUB HEIGHT OF POINT 46, LOCATED AT LEMNOS PLATEAU. 

The iso-lines connecting points of equal k and A values, as extracted from the Weibull probability 
distribution, for the NE wind direction is shown in Figure 4.7. Based on Figure 4.7(a) it is evident that k-
values > 2.4 occur in the Dardanelles area, and that k reduces gradually towards the WNW direction, with 
a stable rate of 0.1 per 20km. On the other hand, the spatial distribution of the scale parameter A seems 
more complex, with local peaks (> 10.5 m/s) at Bozcaada Island and at Saros Gulf, and a general W-E 
isolines orientation, indicating a sharp reduction in A towards the nearshore and on-shore Thracian Sea 
grid points (Figure 4.7(b)). 
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FIGURE 4.7: SPATIAL DISTRIBUTION OF THE WEIBULL PROBABILITY DENSITY FUNCTION PARAMETERS, (A) THE SHAPE 

PARAMETER K, AND (B) THE SCALE PARAMETER A (IN M/S), AT THE HUB LEVEL OVER THE STUDY AREA. 

4.3.5 Wind Energy Content and Power Density 

Using the estimated Weibull probability density function, the total wind energy content per directional bin 
was computed. The total wind energy content (in kWh/m2/yr) can be perceived as the theoretic energy 
potential of a particular site. Therefore, it is a useful metric for the resource assessment of an area and for 
comparative purposes among areas, being independent of the characteristics of the wind turbine. The 
available wind energy content per wind speed increment and wind direction at each gridded point of the 
Thracian Sea was assessed using the R-package bReeze, by: 
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Where ρair is the density of air at the sea level under a mean temperature of 15 °C and one atmospheric 
pressure (= 1.225 kg/m3), n is the total number of directional bins (=16), H is the number of hours of the 
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desired period (=8,760 per year), Wb is the wind speed per directional bin and f(Wb) is the probability of 
that bin, estimated by the Weibull distribution described in Eq. [6]. 

The wind power density is an important factor when assessing the wind potential of a location. It 
designates the available amount of energy per unit of time and swept area of the blades at the selected 
location. It is this amount of energy that will be con-verted to electricity by the wind turbine. The 
estimation of wind power density per directional bin is achieved by fitting the Weibull distribution to the 
respective dataset, expressed mathematically as: 

( )3

1

1
( )

2

n

air b b

b

P W W f W
=

=   (12) 

Using the parameters of the Weibull distribution per grid point and integrating spatially, Table 3 presents 
the wind energy content per directional sector, averaged over the main sub-areas of the study region. The 
analysis suggests that the highest wind energy content occurs in the Lemnos Plateau area (4,455 
kWh/m2/yr), followed by the Dardanelles (4,398 kWh/m2/yr), Siggitikos/Mt Athos (3,091 kWh/m2/yr) and 
East Thracian Sea (2,964 kWh/m2/yr). 

The Table indicates that Lemnos Plateau and the Dardanelles region have a high wind energy content 
spread over three directional bins (NNE, NE and ENE), representing an annual wind energy content of 
3,496 kWh/m2 and 3,431 kWh/m2, respectively. This energy content is equivalent to the power density of 
399 W/m2 and 391 W/m2, respectively. Approximately 22% of this sectorial energy content is being 
produced by winds in the 0-5 m/s range, 43% within the 5-10 m/s, 26% in the 10-15 m/s range, 7% in the 
15-20 m/s and only 2% by winds higher than 20 m/s. The contribution of the S sector in the total wind 
energy content of these two areas also seems quite considerable. 

TABLE 4.3: TOTAL ANNUAL WIND ENERGY CONTENT (IN KWH/M2) AT HUB LEVEL, PER DIRECTIONAL BIN, FOR ALL SUB-
AREAS. 

Sub-Areas/ 

Directional 

Bins 

West 

Thracian Sea 

Central 

Thracian Sea 

East 

Thracian 

Sea 

Lemnos 

Plateau 

Dardanelles Siggitikos/Mt 

Athos 

N 82 62 80 73 59 91 

NNE 214 389 775 887 973 436 

NE 435 664 1,256 2,256 2,206 1,308 

ENE 222 238 262 353 252 556 

E 60 47 30 42 32 96 

ESE 60 15 9 19 14 45 

SE 18 30 12 27 21 33 

SSE 23 23 25 72 58 62 

S 69 112 183 358 395 168 

SSW 27 87 227 235 272 89 

SW 42 26 52 56 61 40 

WSW 14 14 21 29 22 34 

W 9 8 6 13 7 21 

WNW 16 9 5 10 7 24 

NW 29 14 8 17 11 40 

NNW 36 37 13 15 9 47 

all 1,354 1,774 2,964 4,455 4,398 3,091 
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4.3.6 Annual Wind Energy Production 

The estimation of the annual wind energy production follows: 

( )
1

( )
n

turb b b

bpc

AEP A H f W P W


 =

=   (13) 

Where Aturb is the average availability of the turbine, ρair is the density of air (= 1.225 kg/m3), ρpc is the 
specific air density for power curve definition, f(Wb) is the probability of the wind speed bin Wb, estimated 
by the Weibull distribution and P(Wb) is the power output for that wind speed bin. Finally, H is the number 
of operational hours (= 8,760 hours). 

The Capacity Factor (CF) represents the productive suitability of the wind turbine, i.e., an indicator to 
assess the field performance of the turbine. It is defined as the ratio between the average output power 
(Pout) of the wind turbine represented by the AEP, to the theoretical maximum power output on annual 
basis, and is defined as: 

th

AEP
CF

P H
=  (13) 

Pth is the wind turbine's theoretical power, defined as being proportional to the wind speed cubed for wind 
speeds lower than the rated wind speed and equal to the turbine rated power for higher wind speeds. In 
this work, the annual energy production and the capacity factor were assessed based on the Siemens SWT 
2.3 MW wind turbine of 93 m height. This turbine was selected as a potential monopile system to be 
deployed at an offshore wind farm in NE Lemnos. The power curve for this turbine, consisting of wind 
speed and power pairs, starting at the cut-in wind speed of the turbine and ending with the cut-out wind 
speed, is shown in Figure 4.8. 

 

FIGURE 4.8: WIND TURBINE POWER CURVE. 
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Considering the wind profile produced from z1 = 10m (CMEMS data) to hub height (z2 = 93m), the wind 
turbine power curve and dimensions, the annual wind energy production (in MWh/yr) was estimated, 
following equation (13). The highest wind energy may be produced in the Dardanelles region, with a 
spatially-averaged AEP-value of 7,546 MWh/yr. Approximately 75% of this energy (5,684 MWh/yr) is 
concentrated along the NNE, NE and ENE directional sectors, with the NE-AEP being the highest of all 
(48.8%). In parallel, most of the total AEP in Dardanelles is being produced from winds in the range of 10-
15 m/s (46% or 3,532 MWh/yr) and 5-10 m/s (37% or 2,859 MWh/yr). 

In Lemnos Plateau, the spatially-averaged estimated AEP-value reaches 7,212 MWh/yr, mostly provided 
by the same directional bins (NNE, NE and ENE) producing in total 5,342 MWh/yr (i.e., 74% of total AEP). 
As previously, most of the energy is produced by winds in the range of 10-15 m/s and 5-10 m/s, with values 
of 3,261 MWh/yr and 2,701 MWh/yr, respectively. East Thracian Sea is another area of significant interest, 
as the spatially-mean AEP approximates 5,620 MWh/yr, 75% of which is produced from the NNE, NE and 
ENE sectors. Another interesting feature is the rising contribution of the S and SSW directions (5.7% and 
7.9%, respectively). The Siggitikos Gulf and the area of Mt Athos exhibit AEP of the order of 5,241 MWh/yr, 
while the Central Thracian and the West Thracian Sea have values of 3,743 MWh/yr and 2,939 MWh/yr, 
respectively. 

Based on the above AEP-estimates, the capacity factor of turbine performance in the Dardanelles reaches 
37.44%, in Lemnos Plateau is 35.80%, in East Thracian Sea is 27.89% and in Mt Athos area 26.02%. The 
capacity factor in the western and central Thracian Sea was assessed at 14.58% and 18.58%, respectively. 
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5 Costal Erosion Assessment 

5.1 Introduction 

The coastal zone is a very dynamic geomorphologic system where changes occur at diverse temporal and 
spatial scales, mostly related to erosion action, resulting from natural and/or anthropogenic activities. For 
coastal zone monitoring, satellite-borne shoreline extraction and detection of change rates at various 
times are indispensable. These changes in shoreline occur over a wide range of time scales from geological 
to short-lived extreme events. Changes are basically associated with waves, tides, winds, storms, sea level 
change and human activities affecting the geomorphic processes of erosion and accretion. 

Coastal erosion is directly linked to economic losses due to coastal retreat and loss of land, ecological 
damage (especially of valuable coastal habitats) and societal problems. Especially, as coastlines and 
beaches represent valuable buffer zones protecting backshore from marine flooding while shaping the 
socio-economic environment. Globally, coastal tourism and seashore recreational activities contribute by 
5% to Global GDP and by 6-7% to global employment (Hall et al., 2013). Reliable assessments identifying 
erosion-prone areas, quantifying over-decadal shoreline change rates and prioritizing potential solutions 
in beaches formulate the basic elements of effective spatial planning, sustainable coastal development 
and coastal engineering projects (Luijendijk et al., 2018). The robust detection of erosion ‘hot-spots’ and 
the estimation of shoreline change rates requires long-term information on shoreline position, thus, the 
satellite imagery, accompanied by automated image processing techniques, seems the only available and 
low-cost option (Garcνa-Rubio et al., 2015). 

In ODYSSEA project, DUTH developed a series of algorithms to retrieve and process Landsat satellite 
images for the period 1985 to 2020, in order to assess the coastline changes along the sandy beaches of 
the various Observatories. The work focused on the historic shoreline change rates at five ODYSSEA 
Observatories: a) the Thracian Sea coastline in Northern Greece, b) the Israel coastline, c) the Alexandria 
– Port Said shoreline in Egypt, d) the Gulf of Valencia, Spain, and e) the Al-Hoceima shoreline, Morocco. 
Coastal erosion was examined and assessed utilizing satellite-borne shoreline change rates during the 
latest thirty-five years (1985 - 2020). The methodology employed in this study entailed the shoreline 
delineation, using a semi-automatic image classification technique (SCP plugin for QGIS). All shorelines 
were extracted by processing Landsat and Sentinel 2 satellite imageries retrieved from the Earth Explorer 
and the Sentinel Hub, respectively. In order to evaluate the shoreline evolution, an analysis was performed 
by the Digital Shoreline Analysis System software (DSAS) provided by the United States Geological Survey 
(USGS). The DSAS procedure was set using transects every 500 m. The erosion and accretion results 
produced by DSAS were presented through shape files (.shp) to the Marinomica platform. 

5.2 Algorithm Description for Coastal Erosion Assessment 

A series of algorithms and tools were developed in Python programming language by DUTH. These 
algorithms perform the following tasks: 

1. Τhe geographical boundaries of the Region of Interest should be provided by the user in the “input” 
folder of the working directory, as a polygon in .kml or .shp format. 

2. The technical specifications of the analysis should be provided by the user in the “Settings.txt” file 
stored in the working directory. For example, the satellite sensor, the dates of the satellite images, 
the transect distance, the transect length, the uncertainty, the sand color etc. 
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3. The algorithm selects and downloads the satellite images based on the specifications defined in 
the file “Settings.txt”. The suitable satellite images are retrieved from the Google Earth Engine. 

4. Optionally, the algorithm allows additional pre-processing of the images (e.g., cloud masking, 
pansharpening/down-sampling). 

5. A pop-up window opens to manually create a reference shoreline (helps to identify outliers and 
false detections). This step applies only once. 

6. The algorithm estimates the NDWI index combining the bands green and NIR and applying the 
equation: NDWI=(GREEN-NIR)/(GREEN+NIR) in each pixel of the satellite image. The image is 
saved in the output folder of the working directory as “{DATE}_NDWI.tif”. 

7. A machine learning algorithm is being trained manually with a series of sub-samples indicating the 
reflectances in land and water. This step is applied only in the first classification process. 

8. The image is classified with the minimum distance algorithm and saved in the output folder of the 
working directory as “{DATE}_class.tif”. 

9. The classified image is vectorized (raster to vector process) to a polygon and then a polyline is 
created using the vectorizing tool. The polyline is saved in the output folder of the working 
directory as “{DATE}_shoreline.shp”. 

10. The same process follows for every historical satellite image and then the historical shorelines are 
generated. The files are saved in the output folder of the working directory. 

11. A new reference line (baseline) is created offshore and parallel to the most recent coastline. 
12. Vertical transects to the baseline are generated, intersecting the historical shorelines. 
13. The intersect points of the vertical transects are used to estimate the statistical parameters to 

describe the shoreline change through the years (such as EPR, WLR, SCE etc). 
14. The statistical parameters are saved as .csv file and the shorelines as .shp files in the output folder 

of the working directory. 
15. An external algorithm is used for the shoreline validation, using in-situ data or high-resolution 

satellite images. 

5.3 Testing the Algorithm in ODYSSEA Observatories 

5.3.1 The Thracian Sea Observatory 

The coastal erosion assessment algorithm was run for the continental shoreline of the Thracian Sea. This 
is a shoreline of 200 km consisting the northern borderline of the Aegean Sea. Overall, 3,404 transects 
perpendicular to the shoreline were determined distanced to each other by 500 m. 
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FIGURE 5.1: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE THRACIAN SEA 

SHORELINE. 

The coastline in Strymonikos Gulf seems rather stable with accretion tendency at the north-western 
segments, due to the sediment transport provided from Strymon River. In Kariani the shoreline shows 
clear erosive rates of the order of 2,1 m/year at the lee side of a newly-built marina. The upstream side of 
the marine entraps the longshore transported sediments and the area accretes at rates 1.70 – 2.10 m/year 
(Figure 5.2). Another coastal erosion “hotspot” exists at the Nestos delta mouth, an area of 15 km in length, 
where due to the Nestos River damming the highest erosion rates are found of the order of 1,4 – 3,5 
m/year. In Fanari, due to the construction of a marina, the shoreline retreats at rates 3,8 – 5,4 m/year, 
while in Alexandroupolis the expansion of the commercial harbor led to the erosion along the western 
coast at rates of 0.4 to 0.9 m/year (Figure 5.3). 
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FIGURE 5.2: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE WESTERN THRACIAN 

SEA SHORELINE. 

  

FIGURE 5.3: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE EASTERN THRACIAN 

SEA SHORELINE. 
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5.3.2 The Israeli Observatory 

The shoreline of Israel seems rather stabilized, due to the extensive constructions, mostly breakwaters and 
groins built along its coastal zone (Figure 5.4). At the southern part, in Ashqelon and Ashdod there exist 
accretion ‘hotspots’ mostly due to breakwaters and tombolos (Figure 5.5). A series of breakwaters 
dissipate the incident on the coast wave energy while the groins stabilize the sandy beaches of Tel Aviv. 
Low to medium accretion prevails in Netanya and Haifa (Figure 5.6). 

 

FIGURE 5.4: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE SHORELINE OF ISRAEL.  
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FIGURE 5.5: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE SHORELINE OF 

SOUTHERN ISRAEL. 

 

FIGURE 5.6: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE SHORELINE OF 

NORTHERN ISRAEL. 
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5.3.3 The Valencia Observatory 

In Valencia, the coastline is mostly shaped by the sediments transported by Ebro River and the dominant 
longshore currents and incident waves carrying this material along the coastal zone. At the northern part 
from Vinaros to Peniscola, the presence of Ebro delta exhibits medium to high sedimentation rates of the 
order of 0.5 to 0.9 m/year. The coastline is stable along the segment from Alcossebre to Oropesa del Mar 
and shows high accretion towards the Castello de la Plana. Moving further south, the shoreline shows 
stabilized trends, with some areas of strong erosion alternating with segments of high sedimentation up 
to Sagunt harbor. Similar patterns are shown along the coastline towards the Valencia harbor. To the south 
of the Valencia Harbor, coastal erosion of the order of up to 1.4 m/year prevails as a result of sediment 
entrapment at the harbor upstream. The remaining coastal zone is characterized by stabilized segments 
exhibiting that the coastal zone remains in sedimentary balance. 

 

FIGURE 5.7: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE SHORELINE OF THE 

VALENCIA OBSERVATORY. 
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FIGURE 5.8: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE NORTHERN SHORELINE 

OF THE VALENCIA OBSERVATORY. 

 

FIGURE 5.9: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE SOUTHERN SHORELINE 

OF THE VALENCIA OBSERVATORY. 
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5.3.4 The Morocco Observatory 

The shoreline along the Al Hoceima Observatory is mostly rocky with high cliffs and therefore coastal 
erosion is not evident. The western part of the Al Hoceima Bay is characterized by medium erosion to 
medium accretion. Moving towards the central part of the bay, sandy beaches exist and coastal erosion is 
prevalent. Therefore, medium to high erosion is seen from Place Shifa to Place Souani and finally to Place 
R’Hach with coastal erosion rates of 0.3 to 0.6 m/year. Towards the east, deposition is again the dominant 
feature (rate up to 0.14 m/year) (Figure 5.10). 

 

FIGURE 5.10: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE SHORELINE OF THE AL 

HOCEIMA OBSERVATORY. 

5.3.5 The Egyptian Observatory 

The coastal zone is stabilized or even accreting at specific segments to the west of Alexandria, in Egypt. 
The central and eastern parts of Abu Quir Bay are characterized by strong erosion, mostly associated with 
the damming of the Nile River. High coastal erosion rates followed by accumulation zones are seen in the 
zone to the west of the city of Baltim. A series of breakwaters, tombolos and groins stabilize the coast 
between Baltim and Port Said (Figure 5.11). The coastline appears heavily eroded to the east of Port Said. 
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FIGURE 5.11: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE SHORELINE OF THE 

EGYPTIAN OBSERVATORY. 

 

FIGURE 5.12: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE WESTERN SHORELINE 

OF THE EGYPTIAN OBSERVATORY. 
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FIGURE 5.13: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE CENTRAL SHORELINE 

OF THE EGYPTIAN OBSERVATORY. 

 

FIGURE 5.14: COASTAL EROSION/DEPOSITION RATES DURING THE 1985 – 2020 PERIOD, ALONG THE EASTERN SHORELINE 

OF THE EGYPTIAN OBSERVATORY. 
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6 Additional Iterations of Eutrophication Algorithm Adaptations 

The project delivers data services following the concept of Minimum Viable Products (MVPs). This 
essentially means that the algorithm development team first focuses on a release which satisfies the basic 
requirements and therefore avoids spending unnecessary effort to implement further sophisticated 
features that are not requested by end-users. The MVP has the features to be usable by early customers 
who can then provide feedback for future product development and fine-tuning. The MVP for the 
eutrophication product is already released and user validation and expert interviews took place in the past 
period to gather feedback for additional development iterations. In this section of the deliverable we 
summarize the outcome of the expert interviews and provide an inventory of next features that could be 
potentially implemented.  

When considering the viability/probability of implementing these requested features for the 
eutrophication algorithm we should consider certain influencing factors. The output of the algorithm is 
part of the broader Marinomica Water Quality Service (targeting a wide range of industry, policy and 
scientific users), however, the eutrophication indicator itself is most useful to policy users. From 
Marinomica’s business sustainability perspective the allocation of future development hours will prioritize 
those algorithms and features that are producing services for end-users which are most likely to become 
paying customers. 

6.1 Eutrophication algorithm description 

Before further elaborating on the eutrophication algorithm features, we provide a brief summary in the 
below table. 

Eutrophication product summary 

The eutrophication algorithm calculates four indices: 

1. Eutrophication Index in sea water (Eut index): computed through the Principal Component 
Cnalysis of a combination of five parameters: chlorophyll-a (Chl), nitrate (NO3), nitrite (NO2), 
ammonia (NH3), and phosphate (PO4). The first principal component is considered as the 
eutrophication index; 

2. Trophic Index in sea water (TRIX): computed as a linear combination of four state variables: 
chlorophyll (Chl), oxygen saturation (dissolved oxygen - DO), mineral and total nitrogen 
(dissolved inorganic nitrogen - DIN), and phosphorus (total phosphorus - TP). Initially developed 
for northern Adriatic Sea; 

3. Unscaled Trophic Index in sea water (UNTRIX): Unscaled version of TRIX. It is computed by the 
log of the product of four eutrophication-related parameters: chlorophyll-a (Chl), oxygen 
saturation (dissolved oxygen - DO), mineral and total nitrogen (dissolved inorganic nitrogen - 
DIN), and phosphorus (total phosphorus - TP); 

4. Efficiency Coefficient in sea water (Eff coeff): defined as the logarithm of the ratio between the 
two aggregated main components of the TRIX index. It is computed by the combination of four 
parameters: chlorophyll-a (Chl), oxygen saturation (dissolved oxygen - DO), mineral and total 
nitrogen (dissolved inorganic nitrogen - DIN), and phosphorus (total phosphorus - TP). It can be 
considered a supplementary index with which to evaluate the nutrient utilization of the system. 

These indices are used to inform users on the trophic states of marine ecosystems. The inputs to these 
indices are chlorophyll a, dissolved oxygen saturation, and nutrients (phosphate and nitrate) to 
determine the trophic state. 
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The algorithm code was initially industrialized in collaboration between Thales and GTD. The work 
consisted in adding configuration support, integrating automatic source data download from CMEMS, 
adding error handling & console logging, and generating NetCDF compliant output files. 

Later, the industrialized algorithm was taken by GTD, and wrapped into a Docker image based on the 
WPS 2.0 framework developed by CLS. This is the image that has been finally integrated into Marinomica 
in order to launch the product automatically. 

Assumptions 

For the development and integration of these indices in the Marinomica platform, several assumptions 
were made in order to use the operational data available through CMEMS. 

Nitrates are the main nitrogen species contribution to the total DIN, due to the lack of ammonia data. 
In open sea, ammonia and nitrites are of relative low concentration and at the sea surface ammonia 
rapidly oxidizes to nitrates. When the eutrophication product will be calculated based on the ODYSSEA 
models, ammonia concentration will be available and the algorithm will be changed slightly to include 
it especially in areas where wastewater treatment plants outfall. Orthophosphates are the main 
component of total phosphorus. This is true for the inorganic component, perhaps not true for the 
organic one, but it is very hard to find data on organic phosphorus (particulate and dissolved) and this 
is a commonly made assumption. 

For the computation of deviation of current DO level from saturation a step-by-step procedure was 
provided in the deliverable 13.2. 

Finally, the coefficients of TRIX calculation are based on data from the Adriatic, general applicability to 
other areas might not be guaranteed. This means that a rescaling will be needed at a later stage.  

Visual representation of the algorithm output 
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FIGURE 6.1: EUTROPHICATION PRODUCT INPUT VARIABLES AND DERIVED INDICES. 

6.2 Eutrophication product requirements 

As mentioned above, after the release of the Minimum Viable Product for eutrophication, interviews took 
place with scientific and policy experts in the field of eutrophication to discuss additional features that 
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could make the product more tailored to end-user needs. The requested features are listed in the table 
below and described in this section. 

TABLE 6.1: LIST OF REQUESTED EUTROPHICATION ALGORITHM FEATURES. 

Feature name Description 

Summary statistics Complementing standard plots with basic statistics (e.g. mean, 
standard deviation) 

Area sub-setting (sub-regions) Ability for users to look at the indicators in specific areas. This will 
require the ability to manage the drawing, saving and sharing of areas 
for which the product can be run. 

Trends Ability for users to fit various trends based on the values of 
eutrophication indices 

Alerts Ability to set alerts for when the values of eutrophication indices are 
above / below set values 

Depths Display data for specific depths. Ability for users to look at 
eutrophication indices at specific depths. This will require the ability to 
select depth layers for which the product can be run. 

Confidence Visual presentation of confidence in the time series and the spatial 
plots 

Classification Working with meaningful value classes (intervals) rather than numeric 
values 

6.2.1 Summary statistics 

A basic requested feature was to complement traditional time series plots with summary statistics (e.g., 
mean and standard deviation). This allows users to get a quick overview of the mean behavior of the 
variable of interest and its variability in the selected time interval. This feature has already been 
implemented in the latest platform release, as shown in the figure below. 
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FIGURE 6.2: PRESENTATION OF SUMMARY STATISTICS IN THE TIME SERIES PLOT. 

The ability for users to look at the indicators in specific areas was requested. This will require the platform 
to manage the drawing, saving and sharing of areas for which the product can be run. There should be 
two ways of defining sub-regions: 
 

1) Where an administrator of the platform can define a range of areas that can be made publicly 
available. For example, the Mediterranean could be divided up into geographic areas and then 
sub-areas to define a hierarchy of areas that may be used for different purposes (policy, industrial, 
scientific, etc.). An example of pre-defined geographical sub-regions is shown in the figure below. 
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FIGURE 6.3: EXAMPLE OF GEOGRAPHICAL SUBREGIONS IDENTIFIED BY THE GENERAL FISHERIES COMMISSION FOR THE 

MEDITERRANEAN (GFCM). SOURCE: HTTPS://WWW.MEDQSR.ORG/SITES/DEFAULT/FILES/INLINE-FILES/2017 
MEDQSR_ONLINE_0.PDF. 

2) A user should be able to create their own areas. This would be particularly useful where a user is 
interested in a very specific defined area (a mussel farm perhaps). These should be private, to 
allow fishing areas to be defined, as another example, so that the user can be confident that other 
users cannot see the information. 

 

Once the areas are defined, these areas can be used as a basis of an alert system. Popup plots should 
average the values over the area. Function buttons will be added to enable the user to Add, Edit, Delete 
or share the areas. A user should be able to either draw the points onto a map or enter them as a table of 
values. Each point can be edited by dragging or by double clicking to edit the location more precisely. 
 

https://www.medqsr.org/sites/default/files/inline-files/2017MedQSR_Online_0.pdf
https://www.medqsr.org/sites/default/files/inline-files/2017MedQSR_Online_0.pdf
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FIGURE 6.4: MOCK-UP OF AREAS NAVIGATION AND A SELECTED AREA. 

6.2.2 Depths 

The map layer currently loads a single depth. Additional functionality is needed to allow for the user to 
select the depth at which they are interested in working. It should default to the surface or nearest to the 
surface if no surface layer exists (note that this may not be appropriate for meteorological parameters). 
As depth is allowed to be selected, the depth should be shown on the plot (see figure below). A later 
iteration could allow the user to select the depth from the plot screen or to show plots for all available 
layers. Note that this plot only relates to a specific pixel size from the map layer and not from an area in 
general. 

 

FIGURE 6.5: MAP LAYERS MANAGER SHOWING THE AVAILABLE LAYERS IN THE PRODUCT SELECTED (LEFT). IN THIS CASE AN 

EXAMPLE OF CHLOROPHYLL. BELOW THE LAYER COLOUR SELECTION, A NEW FIELD IS TO BE ADDED WHICH WILL DISPLAY TO 

THE USER THE AVAILABLE DEPTHS. DEPTH DISPLAYED ON THE TIME SERIES PLOT (RIGHT). 
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6.2.3 Alerts 

One of the strengths of Marinomica will be the ability for a user to set up alerts for specific events. The 
eutrophication product is an ideal example of this. Alerts remain an undeveloped part of the application 
and these notes propose only how they might apply to the eutrophication product but a more general 
analysis will be needed to design the alerts system for Marinomica. 

A user should be able to add / edit / delete multiple alerts and the method of delivery. Delivery method 
could include email, SMS, push notifications, via the Marinomica mobile app. In addition, not specifically 
related to eutrophication, administrator alerts could be set to publish automatically to social media or 
other mechanisms. An example of mobile app visualization of thresholds and alerts (from another domain 
delivered by a third-party app) is shown below. 

 

FIGURE 6.6: EXAMPLE OF SIMPLE LAYOUT, THRESHOLDS (HEAVY, MODERATE, LIGHT), AND NOTIFICATION “ELEVATED 

TROPHIC INDEX LEVELS STARTING AT XX, LASTING XX”. SOURCE: HTTPS://PLAY.GOOGLE.COM/STORE/APPS/DETAILS?ID= 
ORG.YOKI.ANDROID.DROPS&HL=EN. 

The alert should be based on an area and inform the user when a condition is in a higher or lower state or 
within a range. The user should be able to show how often to test for this. For example: 
 

Alert title   Area  Frequency Indicator  Cond. Value When 

Too high now  Zone 1  Daily  TRIX  < 4 Now 

Too high tomorrow  Zone 1  Daily  TRIX  < 4 Today +1 

Hyper   Zone 2  Weekly (Friday) TRIX  > 6 Today +2 

 

https://play.google.com/store/apps/details?id=org.yoki.android.drops&hl=en
https://play.google.com/store/apps/details?id=org.yoki.android.drops&hl=en
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6.2.4 Classification 

Since the targeted users of the services do not exclusively include scientists, more informative value classes 
(intervals) could be displayed instead of harder to interpret numerical values. This information is more 
important to end-users rather than the actual numeric value. In the figure below we provide two mock-
ups on how we envisage the maps and time series plots with values classes. The mock-ups were created 
for the Trophic index and therefore the values classes are ‘Oligo-, Meso-, Eu-, Hypertrophic’. If we consider 
a more generic water quality indicator, we could use a simpler classification such as ‘Poor’, ‘Average’, ’Good’, 
‘Excellent’, for instance. 

 

FIGURE 6.7: TROPHIC INDEX MAP LEGEND (OVERWRITE VALUES BY CLASSES ‘OLIGO-, MESO-, EU-, HYPERTROPHIC’) 

 

FIGURE 6.8: TROPHIC INDEX TIME SERIES (DISPLAY CLASSES ‘OLIGO-, MESO-, EU-, HYPERTROPHIC’) 
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6.2.5 Confidence 

Another requested feature (most important to scientific users) was to add uncertainty estimates to the 
products thereby expressing confidence. Visual presentation of confidence can be done in both the time 
series and the spatial plots. In the following figure we present mock-ups and examples from other 
applications. 

 

FIGURE 6.9: MOCK-UP OF CONFIDENCE (STANDARD DEVIATION) VISUALIZATION IN THE TIME SERIES DATA (LEFT), AND HEAT 

MAP VISUALLY SHOWING WHERE CONFIDENCE REDUCES DUE TO LACK OF OBSERVATION DATA (SOURCE: 
HTTPS://LEANPUB.COM/LEAFLET-TIPS-AND-TRICKS/READ#LEANPUB-AUTO-GENERATE-A-HEATMAP-WITH-LEAFLETHEAT ) 

6.2.6 Other comments from the interviews 

Apart from the above-described features, here we summarize other important comments of the 
interviewed experts regarding the Eutrophication product. 

TABLE 6.2: FURTHER FEEDBACK ON THE EUTROPHICATION PRODUCT FROM THE INTERVIEWED EXPERTS 

Feedback Description 

Review of indicator 

variables 

The chosen eutrophication indices themselves are not used as policy 

indicators but the underlying variables are used. Thus, the eutrophication 

product and dashboard should include the evolution in all underlying 

variables (chlorophyll a, nitrate, phosphate, dissolved oxygen) 

Long term data for 

assessment 

For policy assessment purposes, produce long term trends next to the near 

real time and short-term forecast data, e.g. use the following products: 

● MEDSEA_REANALYSIS_BIO_006_008: monthly values starting from 

1999-01-01 (until 2018-11-01) 

● MEDSEA_ANALYSIS_FORECAST_BIO_006_014: daily and monthly 

values starting from 2018-05-01 

https://leanpub.com/leaflet-tips-and-tricks/read#leanpub-auto-generate-a-heatmap-with-leafletheat
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Most relevant indicator 

for operational 

purposes  

For operational forecasting oxygen concentration is the most important 

variable 

Aggregation, additional 

statistics 

For historical assessment provide long-term yearly/seasonal averages (or 

other statistics like P90 for chlorophyll) 

Data source and 

reliability 

It needs to be clearly communicated that the eutrophication products are 

based on numerical models and these are less reliable along the coast (e.g., 

if relevant pollution discharges are not present) 
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7 Semantic and Social Network Harvesting 

In deliverables D7.1 and D7.3, we presented the processing chain that we developed in order to obtain 
information from citizens. The aim is to acquire information from citizen on subjects and in geographically 
not sufficiently observed types of events. The processing chain relies on the use of an ontology and the 
conceptual graphs formalism, to provide a pivot representation framework. Thus, information items, 
coming from different sources can be merged. 

D7.3 described a use case on jellyfish invasion monitoring. We presented the domain ontology, as well as 
InSyTo, a semantic information fusion platform. The adaptation of InSyTo to the use case was described, 
as well as the obtained results. The use-case developed focused on helping the detection of jellyfish 
invasions, using unconventional and unusual sources of information for users. The data sources selected 
were the social network Twitter as well as an online application, jellywatch.com. 

Following the completion of the first case study on jellyfish invasion detection, we held demonstrations of 
the information fusion capabilities developed. An interactive demonstrator has been developed, so as to 
allow end users to understand the functions offered, by modifying parameters, data sources etc. The work 
achieved was presented at the FUSION 2020 conference and a film was realized in order to present the 
results to the project partners and potential Marinomica platform users. 

During the various demonstrations, new needs appeared, related to the limitations of the demonstrator. 
We therefore reiterated the loop of activities by reinitializing a needs collection phase, more targeted this 
time around the imperfections highlighted in the demonstrator. We detail this phase below. 

7.1 New needs for Semantic information Analysis from social media 

The demonstrations and workshops set up around the realization of the case study on the detection and 
management of jellyfish invasion through citizen information feedback revealed a significant lack of 
information on data sources. of social media types. Indeed, the data acquired on Twitter, in particular, we 
observed two types of imperfections: 

1. Reported events are rarely geo-located and dated. If we can consider using the date of the tweet 
as the date of the event, this is still risky, as citizens can sometimes intervene about events on 
dates after the event. Regarding geolocation, the problem is even more significant. First, a very 
small percentage of tweets are geo-located because phone users do not activate the geolocation 
option. Second, the interventions and comments of events reported on Twitter can have 
perpetrators located hundreds of kilometers away. 

2. A large amount of information collected is not relevant to monitoring the progress of a situation. 
This is due to several factors. First, the acquisition of twitter messages is done on the basis of a 
filter from keywords, or combinations of keywords. As complex as the keyword combination is, 
however, it is difficult to target exactly one particular event or type of event. In addition, citizens' 
interventions on an event often contain personal comments and opinions, sometimes 
controversial or even leading to false information. All of these contributions are irrelevant to 
situation monitoring, and drown out useful information, making it difficult to access. 

7.2 Proposed Solutions 

These findings led us to study approaches that would improve the quality of information acquired on social 
networks. The approach envisaged to do this is to keep track of the source of the information so as to 
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eventually be able on the one hand to associate a level of trust with it and, on the other hand, to filter the 
incoming information in order to keep only relevant information for monitoring the situation. From 
previous work on the traceability of information sources from social networks, we focused, within the 
framework of ODYSSEA on the second axis: filtering of relevant information. We detail the background and 
the study conducted below. 

7.2.1 Selection of suitable Information sources 

The purpose of the new case study is to improve the overall quality of the information used within the 
case study previously described in the deliverable D7.3. For this reason, we kept the same data sources 
and added new ones aimed at compensating for their shortcomings. 

The data sources for this new phase of the case study can be associated with three media classes. The first 
two of which were already used in the preliminary study. The first class is made up of all social networks, 
on which users share with their connections, testimonials including text descriptions, images and videos. 
These testimonies are dated and sometimes geolocated. In this class, we used the social network Twitter 
as a source of information. The second class is made up of dedicated applications (mobile or not). In these 
applications, users are much more guided in entering their testimonial, and testimonials are, in general, 
geo-localized. This results in much more structured databases, possibly including free text comment fields. 
As a representative of this class, we used the jellywatch.com website as a source of information. In these 
first two media classes, the language used for entering comments depends on the user. As a result, the 
information bases collected are multilingual. 

The third class of media considered consists of encyclopedic resources. Among the resources available, we 
were particularly interested in the use of the Wikidata ontology. Wikidata is a free, collaboratively edited 
knowledge base hosted by the Wikimedia Foundation. We chose Wikidata, to get away from extracting 
information from texts, which we should have done if we had, for example, used the encyclopedia 
Wikipedia. The information in Wikidata is already in a workable format. 

Our goal, through this new study, is to use Wikidata to find the precise references of the locations 
mentioned in the tweets, in order to identify the locations of the events that are reported. The following 
sections describe how we propose to do that. 

7.3 Event Extraction and enrichment 

The content of the information conveyed in each tweet must be represented as an information graph, that 
follows the Conceptual graphs formalism. Our approach relies on the use of bipartite graphs, more 
specifically the Basic Conceptual Graphs (Sowa 1984, Chein and Mugnier 2008) to represent soft data and 
knowledge. The conceptual graphs formalism is a model that encompasses a basic ontology (called 
vocabulary), graph structures and operations on the graphs. The vocabulary defines the different types of 
concepts and relations that exist in the modelled application domain, while the graphs provide a 
representation of the observations, which are provided by the information sources. 

The event extraction from tweets is made of the three following 3 steps that we detail hereafter. The two 
first steps were already part of the first proposition described in D7.3. The third one was added to improve 
the results. 

1. Ontology definition and modelling, 

2. Nammed entities recognition 

3. Wikidata based enrichnment 
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7.3.1 Ontology definition and event modeling 

An ontology that describes the domain of interest (events that have to be monitored for crisis 
management in our case) is defined. Figure 7.1 depicts the ontology that we defined for the present use-
case. 

 

FIGURE 7.1: ONTOLOGY FOR JELLYFISH MONITORING EVENT EXTRACTION. 

Furthermore, as we aim at extracting events from the textual description, we use a generic model of graph 
event description in which we project the extracted entities. This process was detailed in D7.3 so we do 
not repeat it here.  

The model of event, defined as a graph which nodes are labelled with types of the domain ontology is 
defined and used as an empty graph that will be filled with information acquired in the following sub-
processes. The model used for the use case is depicted on Figure 7.2. 

 
FIGURE 7.2: EVENT MODEL GRAPH 

7.3.2 Named Entity Recognition (NER) and Instantiation of the model  

To analyze the natural language parts of the tweets (main texts of the tweets), we rely on the Named Entity 
recognition (NER) function of Spacy. Each entity extracted is associated to its corresponding type in the 
domain ontology and added to the event graph.  
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The extracted Named entities are then projected in the event model. This results in small graphs, that have 
the form of the event model graph, but which contain some instantiated nodes and some instantiated 
ones. An example of such a partially instantiated graph is given hereafter.  

 

In the first proposition (D7.3), we used the tweets meta-data in order to complete the description of events 
extracted from each tweet. However, most of the tweets are not geolocalised, and in many cases, the 
tweets are re-tweeted later on and by people not geolocalised at the same place. Therefore, it would 
improve the quality of the event extracted if one could correlate the geolocation of the tweet, when 
available, with the location related in the text, or even more often, use the location related in the text 
because no geolocation is available in the tweets metadata. For this reason, we study here the possible 
enrichment using Wikidata. 

7.3.3 Wikidata based Enrichment  

The event graph is then further enriched with entities and relations queried from Wikidata. Mixing the use 
of EntityIndexes and PropertyIndexes from the project Falcon2.0 and requests on Wikidata between pairs 
of extracted entities using the pywikibot python library, we are able to enrich the event graph with both 
new information and relations between several information items inside the event graph. This enables us 
improving the level of semantics embedded in the information that represent the tweets.  

After adding concepts and entities, the information contained in each Twitter post is enriched with related 
items extracted from Wikidata. Wikidata is a free knowledge base built to capture and represent general 
knowledge about the world that can be read and edited by humans and machines alike. It provides data 
in all languages of the Wikimedia projects, and allows for central access to the data stored. Entities and 
concepts described in the Wikidata knowledge base are called items and can have labels, descriptions and 
aliases in several languages. We aim at providing meaningful and enriched information. Therefore, we use 
the enriched the framework developed earlier with this new capacity. 

7.4 Experiments and results 

In this section, we first present the data sets that we used and our experimental settings. We then 
emphasize on the clustering and topic extraction tasks. The impact of the enrichment and filtering 
methods was investigated be considering distinct content analysis tasks: the impact of adding WordNEt 
concept and DBPedia entities was analyzed by considering to data clustering and topic extraction before 
and after performing the enrichment. Filtering factual tweets was analyzed independently, as the task 
requires in-depth analysis of results by experts. Preliminary results are presented here-under. It was also 
used as a preliminary step to event extraction. However, we have not yet studied the impact of the use of 
filtering prior to the events extraction in details. Finally, we evaluate the impact of using Wikidata 
resources to enrich the graph events extracted from the tweets 
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7.4.1 Factual vs. non factual tweet filtering 

The question raised in this processing step is whether subjectivity in a good indicator for factual/ non 
factual contents, since there are several approaches developed for subjectivity analysis without 
considering the objectivity aspects.  

In the context of this work, tweets of the first data set (autonomous car) were analysed with TextBlob 
library, which uses SenticNet to implement a lexicon-based approach for sentiment analysis. The algorithm 
returns polarity and subjectivity degrees, whose correlation is shown in Figure 7.3. 

 

FIGURE 7.3: ANALYSIS OF POLARITY AND SUBJECTIVITY OF TWEETS 

To address this issue, the results provided by TextBlob were analyzed. First, two degrees of objectivity (i.e., 
high and low or objective and non-objective) were defined. Then, the results were analyzed manually by 
the authors. As tweets can provide both information and opinions or other subjective features, the analysis 
is carried out at sentence level, in an effort to accurately separate the factual and non-factual parts.  

In order to evaluate the quality of the automatic annotation, several examples for each category (high 
factual & low factual) were selected. Several sentences were also selected for ambiguous cases (i.e., not 
clearly factual). Those sentences were then analyzed by three annotators who indicated the factual and 
non-factual features. Figure 7.4 shows the results of the manual evaluation. 

 

FIGURE 7.4: EVALUATION OF FACTUAL / OBJECTIVE TWEET. 

This evaluation is a first step. We can observe that there is no common consensus over the human 
annotators, and thus the assessment of the quality of the automatic results depend a lot on the referenced 
human annotator. Further evaluation is envisioned, for which a first step of sound evaluation framework 
and methodology will be defined. 



ODYSSEA Deliverable No. 7.4 

 65 

7.4.2 Enrichment for Event extraction from texts 

In order to evaluate the impact of using Wikidata as a ressource for event extraction from tweets, we 
extracted the graph events from the texts of the tweets from the disaster data set, with and without 
requesting Wikidata for additionnal information. We selected the size of the resulting graphs as an 
indicator of the effect of using Wikidata. The size of one graph is processed as the number of its entities 
and relation nodes. 

Figure 7.5 and Figure 7.6 depict the evolution of these numbers without and with the use of wikidata. On 
Figure 7.5, the X axis represents the number of entity nodes (respectively relation nodes on Figure 7.2) 
while the Y axis represents the number of event graphs containing this number of entities (respectively 
relations). As expected, the size of the graphs, thus the quantity of information conveyed increases with 
the use of Wikidata as additional source of information. 

 

FIGURE 7.5: NUMBER OF GRAPHS PER CLASSES OF ENTITIES NUMBER. 

 

FIGURE 7.6: NUMBER OF GRAPHS PER CLASSES OF RELATION NUMBER. 
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Another of our concern was to obtain location information from the texts of the tweets in order to 
overcome the limitation due to the small amount of geo-localized tweets. Therefore, we also compared 
the locations found with and without coupling the named entity recognition (NER) step to Wikidata. 

Figure 7.7 depicts the results of this evaluation. Each bar represents the number of graphs in each class. 
The classes being identified by the number of “has_location” relation found in the graphs. The coupling 
first enables us to link locations found in the texts to the event graphs and between themselves inside the 
graph itself. This last linkage occurs when the text references linked locations such as city and 
corresponding country for instance. Secondly, coupling NER and Wikidata enables us to find additional 
locations, linked to the ones referenced in the text (country of a cited city, city of a cited airport etc.)  

 

FIGURE 7.7: NUMBER OF LOCATIONS LINKED TO THE EVENT GRAPHS. 

Further in-deep manual evaluation of the quality of the enriched graphs with regards to initial ones should 
also be carried in the near future. We will focus on the quality of the information added to the event 
graphs to complete the initial quantitative evaluation. To do so, we will need to rely on the evaluation of 
the quality by experts. 

7.5 Concluding remarks for Semantic Information Analysis 

Although the volume of tweets is higher in case of crisis, disasters or emergencies, extracting meaningful 
information from feeds is a challenging task as user post come with several limitations: contextual 
information is missing, the semantic of the content is poor and factual items are woven with personal 
beliefs, appreciations and opinions. To overcome those limitations, the approach presented in this paper 
enriches the Twitter feeds by adding concepts, contextual information and relations. Three external 
sources support the enrichment process: WordNet, DBPedia and Wikidata. Nonfactual tweets are also 
filtered in order to enhance the semantics of tweets. The framework is developed to support crisis 
management and to improve the quality and relevance of items analyzed. The first direction for future 
work will address the analysis of results. More specifically, we will investigate the impact of enrichment 
on the quality of events extracted. 
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