

ARISTOTLE UNIVERSITY OF THESSALONIKI

ODYSSEA

WP4 – Ecosystem modelling workshop Ecopath with Ecosim

Thermaikos case study

Donna Dimarchopoulou

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727277

odysseaplatform.eu |@odysseaplatform

Steps in constructing an Ecopath base model (Thermaikos Gulf)

Modelled area: ~ 3200 km²

high trawling and purse seining fishing effort

4 fishing fleets

- trawlers
- purse-seiners
- beach-seiners
- small coastal vessels

Low trophic level	Invertebrates	Fish	Other
Phytoplankton	Zooplankton	Red mullets	Sea turtle
Discards	Benthic small crustaceans	Anglerfish	Seabirds
Detritus	Polychaetes	Flatfishes	Dolphins
	Shrimps	Other gadiforms	
	Crabs	Hake	
	Benthic invertebrates	Demersal fishes 1	
	Octopuses & cuttlefish	Demersal fishes 2	
	Squids	Demersal fishes 3	
		Demersal fishes 4	
		Picarels and bogue	
		Sharks	
		Rays & skates	
		Anchovy	
		Sardine	
		Horse mackerels	
		Mackerels	
		Other small pelagics	
		Medium pelagics	
		Large pelagics	

Functional	l groups
------------	----------

Shrimps

Melicertus kerathurus Parapenaeus longirostris

Red mullets

Mullus barbatus

Mullus surmuletus

Large pelagics *Thunnus thynnus Xiphias gladius*

Anglerfish Lophius budegassa Lophius piscatorius

> Medium pelagics Auxis thazard Katsuwonus pelamis Pomatomus saltatrix Sarda sarda Seriola dumerili

Picarels and bogue Spicara smaris Spicara maena Spicara flexuosa Boops boops

> **Rays and skates** Leucoraja naevus Raja clavata Raja radula Torpedo marmorata Rhinobatidae

Horse mackerels Trachurus trachurus Trachurus mediterraneus

Sharks *Mustelus* spp. Squalidae *Scyliorhinus canicula*

> Mackerels Scomber colias Scomber scombrus

Other small pelagics Mugilidae *Belone belone Sardinella aurita*

Biomass (t/km²)

- acoustic surveys
- trawling surveys

Diet composition

 literature reviews on feeding habits of Mediterranean fish

Stergiou & Karpouzi 2002; Karachle & Stergiou 2017; Tsagarakis et al. 2010

ODYSSEA

Landings & discards (t/km²/year)

- Hellenic Statistical Authority
- discard ratio

Tsagarakis et al. 2014 "Mediterranean fishery discards"

P/B, Q/B (year⁻¹)

Thermaikos Gulf

FishBase

22.5°E

• empirical equations

250 m

23°E

Study area – Thermaikos Gulf

Gulf

Thracian Sea

1500 m

24"E

1000 m

23.5°E

• literature

Thermaikos Gulf - Econath w	ith Ec	rosim 6 5 14040 0				
		T M/				
<u>File view Ecopath Ecosin</u>	n E	cospace <u>l</u> oois <u>w</u> indo	ws <u>H</u> eip			
🗏 🧟 Ecopath 👻 Ecosim 🔻 😨	Ecos	space 🔻 🛡 Ecotracer 🔻 😼	C:\Us	ers\donna	\Desktop	UNIVERS
Navigator [#]	1	Start 😂 Basic estimate	s 🖉 😂 Bas	ic input		
✓		lefine groups 🧉 Edit mui	lti ctanza	ie input [
√ e⇒ Input		enne groups 🛪 <u>c</u> uit mu		D:	Denskark	0
Model parameters		Group name	Habitat	BIOMASS in habitat	Producti	ntion /
🗔 Basic input		Group name	(fraction)	area (t/k	biomass	biomass
Diet composition	1	Phytoplankton	1.000	7.866	117.3	
🗔 Detritus fate	2	Zooplankton	1.000	6.100	62.47	186.4
Other production	3	Benthic small crustaceans	1.000	1.110	7.686	57.12
> 🔿 Fishery	4	Polychaetes	1.000	4.808	1.712	13.08
> 💥 Iools	5	Shrimps	1.000	0.306	3.339	7.896
V S Output	6	Crabs	1.000	0.412	2.541	5.187
Basic estimates	7	Benthic invertebrates	1.000	8.710	1.215	3.434
La Key Indices	8	Octopuses and cuttlefish	1.000	0.392	2.900	5.807
> S Mortality rates	9	Squids	1.000	0.363	2.600	26.47
Niche overlap	10	Red mullets	1.000	0.196	1.908	7.192
	11	Anglerfish	1.000	0.203	1.100	3.777
Search rates	12	Flatfishes	1.000	0.107	1.820	8.741
> Sector rates	13	Other gadiforms	1.000	0.580	1.450	6.493
Particle size distribution	14	Hake	1.000	0.400	0.587	3.700
> 🔆 Tools	15	Demersal fishes 1	1.000	0.150	2.400	9.306
Ecosim	16	Demersal fishes 2	1.000	0.246	1.600	7.739
> @ Ecospace	17	Demersal fishes 3	1.000	0.322	1.400	4.592
> 🔆 Tools	18	Demersal fishes 4	1.000	0.237	1.900	11.10
	19	Picarels and bogue	1.000	0.663	1.500	8.339
	20	Sharks	1.000	0.0710	0.698	4.080
	21	Rays and skates	1.000	0.141	1.000	3.394
	22	Anchovy	1.000	2.250	1.753	6.693
	23	Sardine	1.000	1.950	1.778	11.67
	24	Horse mackerels	1.000	0.732	1.000	7.315
	25	Mackerels	1.000	0.294	1.022	6.448
	26	Other small pelagics	1.000	1.170	1.400	6.365
	27	Medium pelagics	1.000	0.250	0.425	3.706
	28	Large pelagics	1.000	0.0490	0.400	2.529
	29	Loggerhead turtle	1.000	0.0200	0.160	2.680
	30	Seabirds	1.000	0.00100	4.780	111.6
	31	Dolphins	1.000	0.0200	0.0800	13.81
	32	Discards	1.000	-		
🕑 Status 🏼 🖉 Remarks						
1: Phytoplankton (Detritus impo	ort)					

odysseaplatform.eu | @ODYSSEAPlatform

Catch per species / Swept area (gear characteristics:

wing opening * duration of the haul)

For each species average biomass from 3 years (1998-2000)

For the **FG**, **sum of the biomasses** of all species

For the final biomass value of the FG application of **catchability factor**

(Sánchez & Olaso 2014)

- 10% demersal species
- 15-20% **benthic** species

Thermaikos Gulf - Ecopath w	ith Ec	osim 6.5.14040.0						
<u>File View Ecopath Ecosin</u>	n E	cos <u>p</u> ace <u>T</u> ools <u>W</u> indo	ws <u>H</u> e	р				
🖃 🤤 Ecopath 💌 🥯 Ecosim 💌 😵	Ecos	pace 🔻 🏶 Ecotracer 🔻 😡	C:\U	sers\donna	\Desktop	UNIVERS		
Navigator [‡]		Start 👙 Basic estimate	s 🖉 😫 🖪	asic input				
✓	D 🔊	efine groups 🧉 Edit mu						
🗸 🔿 Input		enne groups A <u>c</u> arenna		Diamaga	Dura ali cadi	0		
🗔 Model parameters		Group name	area	in habitat	producu	ntion /		
🗔 Basic input		Group hame	(fraction	area (t/k	piomass	biomass		
Diet composition	1	Phytoplankton	1.000	7.866	117.3			
🗔 Detritus fate	2	Zooplankton	1.000	6.100	62.47	186.4		
Other production	3	Benthic small crustaceans	1.000	1.110	7.686	57.12		
> 🔿 Fishery	4	Polychaetes	1.000	4.808	1.712	13.08		
> 💥 Tools	5	Shrimps	1.000	0.306	3.339	7.896		
V S Output	6	Crabs	1.000	0.412	2.541	5.187		
Basic estimates	7	Benthic invertebrates	1.000	8.710	1.215	3.434		
	8	Octopuses and cuttlefish	1.000	0.392	2.900	5.807		
> Mortality rates	9	Squids	1.000	0.363	2.600	26.47		
	10	Red mullets	1.000	0,196	1.908	7,192		
S S Nicre overlap	11	Anglerfish	1.000	0.203	1,100	3,777		
	12	Flatfishes	1.000	0.107	1.820	8.741		
Search Tates	13	Other gadiforms	1.000	0.580	1.450	6.493		
Particle size distribution	14	Hake	1.000	0.400	0.587	3,700		
> Tools	15	Demersal fishes 1	1.000	0.150	2.400	9.306		
> Se Fcosim	16	Demersal fishes 2	1.000	0.246	1.600	7,739		
> Se Ecospace	17	Demersal fishes 3	1.000	0.322	1.400	4.592		
> 🔆 Tools	18	Demersal fishes 4	1.000	0.237	1,900	= 11.10		
	19	Picarels and boque	1.000	0.663	1.500	8.339		
	20	Sharks	1.000	0.0710	0.698	4.080		
	21	Rays and skates	1.000	0.141	1.000	3.394		
	22	Anchovy	1.000	2,250	1.753	6.693		
	23	Sardine	1.000	1.950	1.778	11.67		
	24	Horse mackerels	1.000	0.732	1.000	7.315		
	25	Mackerels	1.000	0.294	1.022	6.448		
	26	Other small pelagics	1.000	1.170	1.400	6.365		
	27	Medium pelagics	1.000	0.250	0.425	3.706		
	28	Large pelagics	1.000	0.0490	0.400	2.529		
	29	Loggerhead turtle	1.000	0.0200	0.160	2.680		
	30	Seabirds	1.000	0.00100	4.780	111.6		
	31	Dolphins	1.000	0.0200	0.0800	13.81		
	32	Discards	1.000			Ē		
🕙 Status 🛛 🖉 Remarks								
1: Phytoplankton (Detritus impo	1: Phytoplankton (Detritus import)							

Catch per species / Swept area (gear characteristics: wing opening * duration of the haul)

For each species average biomass from 3 years (1998-2000)

For the **FG**, **sum of the biomasses** of all species

For the final biomass value of the FG application of **catchability factor**

(Sánchez & Olaso 2014)

- 10% demersal species
- 15-20% **benthic** species

The **pedigree** of an Ecopath input categorizes the origin a given input (the **type of data** on which it is based), and specifies the likely **uncertainty** associated with the input, i.e. the **reliability** of the data.

The **pedigree** of an Ecopath input categorizes the origin a given input (the **type of data** on which it is based), and specifies the likely **uncertainty** associated with the input, i.e. the **reliability** of the data.

	Diet composition								
						<u>S</u> et:	Apply		
As	signment								
-	Group name	Biomass in habitat area	Production / biomass	Consumption / biomass	Diet	Catch			
1	Dhytoplankton	Diomass in nabitat area	Troduction/ biomass	Consumption/ biomass	Diet	Caton			
1 2	Zooplankton								
2	Bonthic small crustacoans								
4	Polychaetes								
5	Shrimns								
6	Crahs								
7	Benthic invertebrates								
, 8	Octonuses and cuttlefish								
9	Squids								
10	Red mullets								
11	Analerfish								
12	Flatfishes								
13	Other gadiforms								
14	Hake								
15	Demersal fishes 1								
16	Demersal fishes 2								
17	Demersal fishes 3								
18	Demersal fishes 4								
19	Picarels and bogue								
20	Sharks								
21	Rays and skates								
22	Anchovy								
23	Sardine								
24	Horse mackerels								
25	Mackerels								
26	Other small pelagics								
27	Medium pelagics								
28	Large pelagics								
29	Loggerhead turtle								
30	Seabirds								
31	Dolphins								
22	Discorde								

Weighted averages for FGs % weight

ODYSSEA

Diet composition

 \times

Thermaikos Gulf - Ecopath with Ecosim 6.5.14040.0

<u>File View Ecopath Ecosim Ecospace Tools Windows Help</u>

🛛 😂 Ecopath 🔻 🖗 Ecosim 🔻 🏶 Ecospace 🔻 🗣 Ecotracer 🔻 🛃 🛛 C:\Users\donna\Desktop\UNIVERSITY\Research projects\PROTOMEDEA\Ecopath\Thermaikos\Therm_eco...\Thermaikos_Base_model_1998_2000_No5_minors_after_tsag.ewe

Navigator [‡]	🙆 Start 😂 Basic estima	ites	😂 Basic	input	Diet	compos	ition																	• ×
✓	Sum diets to <u>one</u>																			< 2	<u>S</u> et:		Apply	у 🖪
Model parameters	Prey \ predator	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
	1 Phytoplankton	0.600	0.0200	_	-	-	_	-	_						-	0.0200	00000				. /		0.131	
Diet composition	2 Zooplankton	0.200	0.0970	_	0.103	0.00500	_	0.0900	0.175	0.140	0.0180	0.161	0.300	0.137	0.107	0.150	0.152	0.773	0.900	0.142	0.0350	1.000	0.849	0.
Detritus fate	3 Benthic small crustaceans	-	0.0300	-	0.230	0.0600	_	0.140	0.128	0.184	0.0300	0.121	0.305	0.0630	0.131	0.200	0.0780	0.100	0.0500		0.00600		0.0200	0.0
G Other production	4 Polychaetes	_	0.0200	0.0300	0.200	0.410	0.0200	0.0600	0.0750	0.132	0.0600	0.0220			0.661	0.120	0.0950	0.0190	0.0450	0.0500	0.100	1	(T	0.0
> ➡ Fishery	5 Shrimps	-	_	-	0.0300	0.0200	-	0.01000	0.00500	0.0400	0.0200	0.0120	0.01000	0.0730	0.0180	0.0500	0.0840	0.0450	0.00500	0.01000	0.100		1	0.0
> 🔆 Tools	6 Crabs	-	_	-	0.0260	0.0250	-	0.0500	0.0130	0.0800		0.0120	0.0320			0.0900	0.0380	0.0360		0.100	0.100		1	0.0
🗸 🐃 Output	7 Benthic invertebrates	-	0.0300	0.0600	0.280	0.310	0.0300	0.530	0.0200	0.0240	0.100	0.0400	0.00800	0.0200	0.0830	0.0200	0.145	0.0270		0.200	0.0350		1	0.0
🗔 Basic estimates	8 Octopuses and cuttlefish	-	-	-	0.0200	-	-	0.0500	0.0350		0.100	0.0400	0.00500	0.0400		0.0150	0.0480	1		0.0800	0.0120		ſ	0.0
🗔 Key indices	9 Squids	-	-	-	-	-	-	-	0.0450					0.115				1		0.0680	0.00800		1	0.0
> 🐃 Mortality rates	10 Red mullets	-	-	-	-	-	-	-	0 .00900		0.0200		0.0310			0.0400		1			0.0550		1	
Consumption	11 Anglerfish	-	=	-	-	-	=	=	=		0.0200				-			<u> </u>		0.0200	1 1		1 1	
> 🐴 Niche overlap	12 Flatfishes	-	-	-	-	-	=	=	=		0.0200	0.01000		0.0120	-			<u> </u>		0.0540	0.00800		1 1	0.0
	13 Other gadiforms	-	=	=	-	-	=	=	0.0220		0.100	0.120	0.00600	0.0300		0.0800	0.0220	- 1		0.0480	0.0400		i 1	0.0
La Search rates	14 Hake	-	-	=	-	-	=	=	0.00200		0.0360			0.0400						0.0460	0.0260	1 1	1 1	
> 🐃 Fishery > 🐃 Particle size distribution	15 Demersal fishes 1	-	-	=	-	<mark>0</mark> .00300	=	=	<mark>0</mark> .00100			0.0800	0.0300	0.0200		0.0150				0.0430	0.0800	1 1	1 1	
	16 Demersal fishes 2	-	-	=	-	-	=	0.0200	=		0.0500	0.0400		0.0200			0.0500				0.0300	1 1	1 1	
> Secosim	17 Demersal fishes 3	-	-	=	-	<mark>0</mark> .00200	=	0.0400	=			0.120	0.01000	0.0400				<u> </u>			0.0300		1 1	
> @ Ecospace	18 Demersal fishes 4	-	-	-	-	<mark>.00200 0</mark>	=	=	0 .00100		0.0360	0.0700	0.0150	0.0400		0.0300	0.01000			0.0280	0.0600	1	1	
> X Tools	19 Picarels and bogue	-	=	-	-	-	=	<mark>_0</mark> .01000	0.0230		0.0800		0.0320	0.0300		0.0750	0.0550				0.01000	1	1	0.0
	20 Sharks	-	=	=	-	=	=	=	0 .00400											0.000100		1	1	4
	21 Rays and skates	-	=	=	-	-	=	=	=		0.0500	00800.								0.0150			1	<u>.</u>
	22 Anchovy	-	=	=	-	-	=	=	<mark>_</mark> 0.156		0.0300	0.0400	0.184	0.160			0.114			0.0180	0.195		1 1	<mark>)</mark> .0
	23 Sardine	=	=	=	=	=	=	=	<mark>_</mark> 0.163		0.0500	00800.	0.01000	0.110		0.0300	0.0500			0.0200	0.0500		<u> </u>	<mark>)</mark> .0
	24 Horse mackerels	=	=	=	=	=	=	=	0.0300		0.130	0.0690								0.0480	0.01000		1	
	25 Mackerels	=	=	=	=	=	=	=	<mark>.0.00300</mark>		0.0500	0.0200			_	0.0300	0.0500			<u> </u>		1		
	26 Other small pelagics	=	=	=	=	=	=	=	0.0900					0.0500	_	0.0300				<u> </u>		1	<u>í</u>	<mark>)</mark> .0
	27 Medium pelagics	=	=	=	=	=	=	=	=											<u> </u>				
	28 Large pelagics	=	=	=	=	=	=	=	=											<u> </u>				
	29 Loggerhead turtle	=	=	=	=	=	=	=	=											<u> </u>				
	30 Seabirds	=	=	=	=	=	=	=	=											<u> </u>				
	31 Dolphins	=	=	=	=	=	=	=	=											<u> </u>				
	32 Discards	=	<mark>0</mark> .00300	=	0.0150	0 .01000	=	=	=				0.0130							0.01000	0.01000			<u> </u>
	<																							>
🚱 Status 🏼 Remarks																								
1 Phytoplankton (Detritus import)																								

Stergiou & Karpouzi 2002 "Feeding habits and trophic levels of Mediterranean fish"

Karachle & Stergiou 2017 "An update on the feeding habits of fish in the Mediterranean Sea (2002-2015)"

Uncategorized demersal fishes

Species	AA	Species	AA	Species	AA
Callionymus risso	1	Gobius vittatus	21	Scorpaena scrofa	41
Capros aper	2	Helicolenus dactylopterus	22	Serranus hepatus	42
Cepola macrophthalma	3	Hoplostethus mediterraneus	23	Serranus cabrilla	43
Chelidonichthys cuculus	4	Hymenocephalus italicus	24	Serranus scriba	44
Chelidonichthys lucerna	5	Lepidopus caudatus	25	Sparus aurata	45
Chimaera monstrosa	6	Lepidotrigla cavillone	26	Spondyliosoma cantharus	46
Coelorinchus caelorinchus	7	Lithognathus mormyrus	27	Symphodus cinereus	47
Conger conger	8	Merlangius merlangus	28	Symphodus mediterraneus	48
Coris julis	9	Oblada melanura	29	Symphodus ocellatus	49
Deltentosteus quadrimaculatus	10	Ophichthys rufus	30	Symphodus rostratus	50
Dentex dentex	11	Ophidion barbatum	31	Symphodus tinca	51
Diplodus annularis	12	Pagellus acarne	32	Syngnathus acus	52
Diplodus puntazzo	13	Pagellus bogaraveo	33	Trachinus draco	53
Diplodus sargus	14	Pagellus erythrinus	34	Trigla lyra	54
Diplodus vulgaris	15	Pagrus auriga	35	Trigloporus lastoviza	55
Eutrigla gurnardus	16	Pagrus pagrus	36	Umbrina cirrosa	56
Gnathophis mystax	17	Pomatomus saltatrix	37	Uranoscopus scaber	57
Gobius bucchichi	18	Sarpa salpa	38	Zeus faber	58
Gobius cruentatus	19	Scorpaena notata	39		
Gobius niger	20	Scorpaena porcus	40		

Diet composition

Dendrogram Ward's Method,Euclidean

14

Landings / discards (t/km²/year)

Differmation Free States and Stat	ith Ecosim 6.5.14040.0						th Ecosi	sim 6.5.14040.0					
<u>F</u> ile <u>V</u> iew <u>E</u> copath Eco <u>s</u> in	n Ecos <u>p</u> ace <u>T</u> ools <u>W</u> in	ndows <u>H</u> elp					n Ecos	s <u>p</u> ace <u>T</u> ools <u>W</u> ind	lows <u>H</u> elj	c			
🖃 😂 Ecopath 💌 🎯 Ecosim 💌 🌚	Ecospace 💌 🌑 Ecotracer 💌	C:\Us	ers\donna\De	sktop\UNIVER	SITY\Research	projects	Ecospa	ace 🔻 🌑 Ecotracer 👻	C:\U:	sers\donna\D	esktop\UNIVE	RSITY\Researc	h projects
Navigator [‡]	🖄 Start 👙 Basic estim	ates 😂 Bas	sic input 👙	Diet compositi	on 👙 Defir	nition of f	/ 🖾 S	Start 👙 Basic estimat	tes 😂 Ba	isic input 🔮	Diet composi	tion 🤤 Def	inition of f
🗸 🚍 Ecopath													
🗸 🔿 Input		Trowlers	Durse	Peach	Small soals				Trawlore	Durco	Roach	Small coolo	
🗔 Model parameters	Group name	(t/km²/year)	seiners (t/km	seiners (t/km ²	(t/km²/year)	Total		Group name	(t/km ²)	seiners (t/km	seiners (t/km²	(t/km ²)	Total
🗔 Basic input	1 Phytoplankton	(chair) cai)	contore (train		(charry) cary	0.000	1 Phy	vtoplankton	()			()	0.000
Diet composition	2 Zooplankton					0.000	2 700	onlankton					0.000
Detritus fate	3 Benthic small crustaceans					0.000	3 Ben	nthic small crustaceans					0.000
Other production	4 Polychaetes					0.000	4 Poly	vchaetes					0.000
	5 Shrimps	0.0320			0.0590	0.091	5 Shri	rimps	0.0140			0.00600	0.020
	6 Crabs	0.00300			0.00600	0.009	6 Cra	ahs	0.00100			0.00100	0.020
	7 Benthic invertebrates					0.000	7 Ben	nthic invertebrates	0.00480			0.00350	0.002
Discalus	8 Octopuses and cuttlefish	0.00824	0.000039	0.000105	0 191	0.200	8 Octo	topuses and cuttlefish	0.00000			0.0450	0.054
	9 Squids	0.01000		0.00100	0.00400	0.015		uide	0.00400			0.0400	0.004
	10 Red mullets	0.00800		0.00100	0.0310	0.039	10 Red	d mullete	0.00400			0.00300	0.007
Non-market price	11 Anglerfish	0.0140			0.00500	0.019	11 Ang	alorfish	0.00400			0.00100	0.007
	12 Flatfishes	0.00200	0.00200		0.0920	0.096	12 Elat	fichos	0.00000			0.00000	0.007
v S Output	13 Other gadiforms	0.0340	0.00200		0.0020	0.051	12 1 lat	or adiforms	0.00900			0.00300	0.009
Basic estimates	14 Hake	0.0170			0.0540	0.071		ko	0.00000			0.00100	0.009
Key indices	15 Demersal fishes 1	0.0170	0.00200		0.00800	0.010	15 Don	moreal fishes 1	0.00700			0.00500	0.012
> Mortality rates	16 Demorsal fishes 2	0.0100	0.00200		0.00000	0.010	16 Den	mercal fishes 2	0.00400			0.00000	0.000
	17 Demorsal fishes 3	0.0130	0.00300	0.00100	0.0740	0.081	17 Den	mersal fishes 2	0.00400			0.00800	0.012
> 🐃 Niche overlap	18 Domorsal fishes 4	0.00200	0.00400	0.00100	0.0020	0.007	19 Don	mercal fishes 4	0.00100			0.00800	0.009
Electivity	10 Demersal listies 4	0.00100	0.00300	0.00100	0.0320	0.037	10 Den	arels and begue		0.00100		0.01000	0.010
Search rates	20 Sharke	0.00150	0.0220	0.00200	0.0170	0.041	19 Pica	arers and bogue	0.00100	0.00100		0.00200	0.005
> 🐃 Fishery	21 Days and skatos	0.00130	0.000300		0.00330	0.005	20 Sha	diks voland ekotee	0.00100	0.00100		0.00300	0.005
> 🐃 Particle size distribution	22 Anchow	0.00700	0 302	0.00300	0.000	0.045	21 Ray	ys anu skales	0.00400	0.0190		0.00200	0.000
> 🔆 Tools	22 Andriovy	0.00100	0.392	0.00300	0.199	0.393	22 And	chovy		0.0180	0.00000	0.0200	0.038
> 🍚 Ecosim	23 Saluille	0.00100	0.0520	0.0170	0.409	0.040	23 Sar		0.00400	0.0160	0.00200	0.0490	0.007
> 🚱 Ecospace	24 Holse Indexerels	0.00000	0.0330	0.00200	0.105	0.100	24 Hor	rse mackereis	0.00400	0.00300		0.01000	0.017
> 🔆 Tools	20 Mackerels		0.0340	0.00100	0.0190	0.004	25 Mac	ckereis		0.00200		0.00200	0.004
	20 Other small peragics		0.0000	0.00200	0.320	0.400	26 Othe	ler small pelagics		0.00400		0.0310	0.035
	27 Medium peragics	0.000025	0.00200	0.000082	0.0150	0.017	27 Mec	dium pelagics				0.00100	0.001
	28 Large peragics	0.000035	0.00100	0.000082	0.00663	0.010	28 Larg	ge pelagics				0.00700	0.007
	29 Loggernead turtie					0.000	29 Log	gernead turtie				0.00250	0.002
	30 Seabirds					0.000	30 Sea	adirus				0.0000.40	0.000
	31 Dolphins					0.000	31 Dolp	ipnins				0.000340	0.000
	32 Discards					0.000	32 Disc	cards					0.000
	1.3.3 Dell'ITUS				· · · · · · · · · · · · · · · · · · ·	0.000		minie		I			0.000
(derived value selected)													

Turnover rate

P/B = Z = F + M

- F from stock assessment: F = C/B
- M from empirical equation (Pauly, 1980)

$$M = K^{0.65} \cdot L_{\infty}^{-0.279} \cdot T^{0.463}$$

K is the growth rate (/year)

*L*_∞ is the asymptotic length (total length, cm) *Tc* is the mean habitat (water) temperature, in °C

weighted averages for each FG

Non-fish FGs: values from other models with adjusted T, literature

Q/B – food consumption (year⁻¹)

Q/B from FishBase Life-history tool

C 🖯 🖯 🖸 fishbase.se/popdyn/KeyfactsSummary_1.php?ID=1327&genusname=Mullus&speciesname=surmuletus&fc=332&vstockcode=1345

🔄 🔂 🏒 🖾 🔿

Values shown below are defaults. Please double-check, replace with better values as appropriate, and 'Recalculate'.

About this page...

Life History Data on *Mullus surmuletus* Surmullet

*Non-fish FGs: values from other models with adjusted T, literature

Thermaikos Gulf - Ecopath with Ecosim 6.5.14040.0

<u>File View Ecopath Ecosim Ecospace Tools Windows Help</u>

🖩 🤤 Ecopath 👻 Ecosim 🔻 🧐 Ecospace 💌 🗬 Ecotracer 👻 🛃 🛛 C:\Users\donna\Desktop\UNIVERSITY\Research projects\PROTOMEDEA\Ecopath\Thermaikos\Th

Navigator 4		🕽 Basic estimates 🌶 🤤 Bas	ic input	😂 Diet co	ompositior	n 😂 Det	finition of	fleets 🤤	Landings	🗧 😂 Disca	rds 🍃
🗸 🚭 Ecopath	👁 Define groups 😾 Edit multi-stanza										
 Input Model parameters Basic input 		Group name	Habitat area (fraction)	Biomass in habitat area (t/k	Producti on / biomass	Consum ption / biomass	Ecotroph ic Efficienc	Other mortality	Producti on / consump	Unassim consump	Detritus import (t/km²/ye
Diet composition	1	Phytoplankton	1.000	7.866	117.3						
Detritus fate	2	Zooplankton	1.000	6.100	62.47	186.4				0.400	
Other production	3	Benthic small crustaceans	1.000	<u> </u>	7.686	57.12				0.200	
 Fishery Definition of floats 	4	Polychaetes	1.000	4.808	1.712	13.08				0.600	
	5	Shrimps	1.000	0.306	3.339	7.896				0.200	
	6	Crabs	1.000	0.412	2.541	5.187				0.200	
Discard mortality rate	7	Benthic invertebrates	1.000	8.710	1.215	3.434				0.430	
	8	Octopuses and cuttlefish	1.000	0.392	2.900	5.807				0.200	
	9	Squids	1.000	0.363	2.600	26.47				0.200	
Non-market price	10	Red mullets	1.000	0.196	1.908	7.192				0.200	
v & Tools	11	Anglerfish	1.000	0.203	1.100	3.777				0.200	
Growth input	12	Flatfishes	1.000	0.107	1.820	8.741				0.200	
Pediaree	13	Other gadiforms	1.000	0.580	1.450	6.493				0.200	
Traits	14	Hake	1.000	0.400	0.587	3.700				0.200	
✓ ➡ Output	15	Demersal fishes 1	1.000	0.150	2.400	9.306				0.200	
🗔 Basic estimates	16	Demersal fishes 2	1.000	0.246	1.600	7.739				0.200	
🗔 Key indices	17	Demersal fishes 3	1.000	0.322	1.400	4.592				0.200	
> 🐃 Mortality rates	18	Demersal fishes 4	1.000	0.237	1.900	11.10				0.200	
🗔 Consumption	19	Picarels and bogue	1.000	0.663	1.500	8.339				0.200	
> 🐃 Niche overlap	20	Sharks	1.000	0.0710	0.698	4.080				0.200	
🗔 Electivity	21	Rays and skates	1.000	0.141	1.000	3.394				0.200	
🗔 Search rates	22	Anchovy	1.000	2.250	1.753	6.693				0.300	
> 🐃 Fishery	23	Sardine	1.000	1.950	1.778	11.67				0.300	
> Sector Particle size distribution	24	Horse mackerels	1.000	0.732	1.000	7.315				0.200	
> 🔆 Tools	25	Mackerels	1.000	0.294	1.022	6.448				0.200	
> We Ecosim	26	Other small pelagics	1.000	1.170	1.400	6.365				0.300	
> Se Ecospace	27	Medium pelagics	1.000	0.250	0.425	3.706				0.200	
> 🔀 100IS	28	Large pelagics	1.000	0.0490	0.400	2.529				0.200	
	29	Loggerhead turtle	1.000	0.0200	0.160	2.680				0.200	
	30	Seabirds	1.000	0.00100	4.780	111.6				0.200	
	31	Dolphins	1.000	0.0200	0.0800	13.81				0.200	
	32	Discards	1.000	-							0.000
A Status A Pomarks											

Default value of **0.2** for carnivorous fish groups if other estimates are not available (Winberg 1956)

For **herbivores**, the proportion not assimilated may be considerably higher, e.g. up to **0.4** in **zooplankton**

1: Phytoplankton (Biomass accumulation rate)

The **fraction of the food** that is not assimilated (it is **not physiologically useful**), consists of urine and feces and is directed to **detritus**.

Navigato

Ecopath Ecosim Ecospace Tools Windows Help

C:\Users\donna\Desktop\UNIVERSITY\Research projects\PROTOMEDEA\Ecopath\Therma 😂 Ecopath 🔻 🥹 Ecosim 🔻 🤢 Ecospace 💌 🌒 Ecotracer 💌 🛃

ECOPATH outputs

lavigator [#]		Start 😂 Basic estimates	😂 Basic in	put 😂 C	iet compo	sition 🕌	Definitio	on of fleets	😂 Lanı	dings 불
🖢 😂 Ecopath										
 ✓ Input □ Model parameters □ Basic input 		Group name	Trophic level	Habitat area (fraction)	Biomass in habitat area (t/k	Biomass (t/km²)	Producti on / biomass	Consum ption / biomass	Ecotroph c Efficienc	Producti on / consump
Diet composition	1	Phytoplankton	1.000	1.000	7.866	7.866	117.3		0.744	
Detritus fate	2	Zooplankton	2.250	1.000	6.100	6.100	62.47	186.4	0.764	0.335
Other production	3	Benthic small crustaceans	2.211	1.000	1.110	1.110	7.686	57.12	0.993	0.135
🗸 🔿 Fishery	4	Polychaetes	2.100	1.000	4.808	4.808	1.712	13.08	0.988	0.131
Definition of fleets	5	Shrimps	3.088	1.000	0.306	0.306	3.339	7.896	0.999	0.423
🗔 Landings	6	Crabs	2.966	1.000	0.412	0.412	2.541	5.187	0.997	0.490
Discards	7	Benthic invertebrates	2.053	1.000	8.710	8.710	1.215	3.434	0.995	0.354
Discard mortality rate	8	Octopuses and cuttlefish	3.326	1.000	0.392	0.392	2.900	5.807	1.000	0.499
Discard fate	9	Squids	3.838	1.000	0.363	0.363	2.600	26.47	0.997	0.098
Off-vessel price	10	Red mullets	2.809	1.000	0.196	0.196	1.908	7.192	0.994	0.265
Non-market price	11	Anglerfish	4.182	1.000	0.203	0.203	1.100	3.777	0.211	0.291
✓ X TOOIS	12	Flatfishes	4.002	1.000	0.107	0.107	1.820	8.741	0.995	0.208
Growin input	13	Other gadiforms	3.552	1.000	0.580	0.580	1.450	6.493	1.000	0.223
	14	Hake	4.144	1.000	0.400	0.400	0.587	3.700	0.998	0.159
	15	Demersal fishes 1	3.144	1.000	0.150	0.150	2.400	9.306	0.995	0.258
Basic estimates	16	Demersal fishes 2	3.657	1.000	0.246	0.246	1.600	7.739	0.996	0.207
Key indices	17	Demersal fishes 3	3.724	1.000	0.322	0.322	1.400	4.592	0.991	0.305
Mortality rates	18	Demersal fishes 4	3.301	1.000	0.237	0.237	1.900	11.10	0.995	0.171
Consumption	19	Picarels and bogue	3.245	1.000	0.663	0.663	1.500	8.339	0.992	0.180
> S Niche overlap	20	Sharks	3.930	1.000	0.0710	0.0710	0.698	4.080	0.988	0.171
Electivity	21	Rays and skates	4.022	1.000	0.141	0.141	1.000	3.394	0.717	0.295
Search rates	22	Anchovy	3.250	1.000	2.250	2.250	1.753	6.693	0.995	0.262
> 🐃 Fishery	23	Sardine	3.085	1.000	1.950	1.950	1.778	11.67	0.997	0.152
> 🐃 Particle size distribution	24	Horse mackerels	3.361	1.000	0.732	0.732	1.000	7.315	0.994	0.137
> 🔆 Tools	25	Mackerels	3.489	1.000	0.294	0.294	1.022	6.448	0.994	0.158
🔮 Ecosim	26	Other small pelagics	3.220	1.000	1.170	1.170	1.400	6.365	0.997	0.220
😥 Ecospace	27	Medium pelagics	4.191	1.000	0.250	0.250	0.425	3.706	0.257	0.115
🔆 🎌 Tools	28	Large pelagics	4.239	1.000	0.0490	0.0490	0.400	2.529	0.864	0.158
	29	Loggerhead turtle	3.088	1.000	0.0200	0.0200	0.160	2.680	0.781	0.060
	30	Seabirds	2.283	1.000	0.00100	0.00100	4.780	111.6	0.000	0.043
	31	Dolphins	4.457	1.000	0.0200	0.0200	0.0800	13.81	0.213	0.006
	32	Discards	1.000	1.000					0.987	
Status 🖉 Remarks										

P/Q typically varies between 0.1 and 0.30

Consumption of most groups is about 3-10 times higher than their production

May be lower for top predators and higher for very small organisms

It "travels well"

1: Phytoplankton (Biomass accumulation rate

EE is the proportion of production that is used in the system (predation or fishing)

1-EE is "other mortality"

EE close to 1 usually, except for

Phytoplankton in bloom (0.5)

Kelp and macro-algae (0.1)

Unexploited predators (~0)

Producti

consum

0.335

0.131

0.423

0.352

0.506

0.098

0.111

0.086

0.128

0.084

0.387

0.194

0.085

0.074

0.091

0.169

0.214

0.211

0.089

0.272

0.060

0.043

0.006

Ecotroph

Efficienc

0.415

0.892

0.706

4 107

1.833

3.771

0.583

1.641

0.402

1.618

2.305

1.885 3.872

1.657

4.352

0.766

0.616

2.066

4.965

1.367

0 4 5 9

0.969

0.000

0.000

0.625

Producti

biomass

117.3

59.49

on /

Biomass

(t/km²)

7.866

3.560

0.0200

0.0800

13.81

Consu

ption /

biomas

177.5

EE < 1.0: The EE can never > 1

It is not possible for more biomass to be passed on to the next trophic level than was originally produced

ODYSSEA

- Maybe a FG has too low biomass
- Maybe the conversion factors used are wrong
- Maybe too much predation is exerted on a FG
- Maybe a FG is fished too much

Look for **big problems initially**, evaluate which parameters are **most uncertain**, change those

odysseaplatform.eu | @ODYSSEAPlatform

Modify the data that has less quality (use pedigree)

	Consumption	13	Denutic small c	2.215	1.000	1.110	1.110	7.320	- 54
	> 🐃 Niche overlap	4	Polychaetes	2.100	1.000	4.808	4.808	1.630	12
	Electivity	5	Shrimps	3.092	1.000	0.214	0.214	3.180	7.5
	□ Search rates > ☜ Fishery	6	Crabs	2.967	1.000	0.412	0.412	2.420	4.9
		7	Benthic inverte	2.053	1.000	8.710	8.710	1.150	3.2
)	> Sector Particle size distribution	8	Octopuses and	3.469	1.000	0.247	0.247	2.680	5.3
	> 🔀 Tools	9	Squids	4.012	1.000	0.363	0.363	2.600	26
	> 🔮 Ecosim	10	Red mullets	2.970	1.000	0.196	0.196	0.810	7.3
	> 🗟 Ecospace	11	Anglerfish	4.265	1.000	0.475	0.475	0.358	4.1
	> 🔀 Loois	12	Flatfishes	4.080	1.000	0.142	0.142	1.232	9.6
		13	Other gadiform	3.757	1.000	0.580	0.580	0.599	7.0
		14	Hake	4.121	1.000	0.377	0.377	0.591	4.0
		15	Demersal fishe	3.145	1.000	0.0510	0.0510	3.948	10
		16	Demersal fishe	3.914	1.000	0.246	0.246	1.641	8.5
igrop		17	Demersal fishe	3.846	1.000	0.322	0.322	0.898	4.6
Igi CCJ		18	Demersal fishe	3.390	1.000	0.224	0.224	1.660	12
• ·		19	Picarels and bo	3.246	1.000	1.955	1.955	0.774	9.1
		20	Sharks	3.947	1.000	0.313	0.313	0.311	4.2
		21	Rays and skate	4.058	1.000	0.188	0.188	0.324	3.5
		22	Anchovy	3.250	1.000	1.628	1.628	1.986	6.3
		23	Sardine	3.086	1.000	1.606	1.606	1.877	11
		24	Horse mackere	3.354	1.000	0.732	0.732	0.936	7.7
		25	Mackerels	3.491	1.000	0.0880	0.0880	1.504	7.0
		26	Other small pel	3.227	1.000	0.500	0.500	2.069	9.7
		27	Medium pelagi	4.235	1.000	0.250	0.250	0.430	4.8
		28	Large pelagics	4.271	1.000	0.0710	0.0710	1.090	4.0
		29	Loggerhead tur	3.184	1.000	0.0200	0.0200	0.160	2.6
		30	Seabirds	2.396	1.000	0.00100	0.00100	4.780	11

Dolphins

32 Discards

4.535

1.000

1.000

1.000

🕼 Start 😂 Basic estimates

Group name

Phytoplankton

Zooplankton

Trophic

1.000

2.250

Help

Habitat

(fraction)

1.000

1.000

area

Biomass

in habitat

area (t/k

7 866

3.560

🧐 Status 🏼 📓 Remarks

1: Phytoplankton (Biomass accumulation rate)

Thermaikos Gulf - Ecopath with Ecosim 6.5.14040.0
File View Ecopath Ecosim Ecospace Tools Windows

Navigator

Ecopath

> 🔿 Input

v 👒 Output

🗔 Basic estimates

Key indices

> S Mortality rates

🗐 🤤 Ecopath 💌 😔 Ecosim 💌 🧐 Ecospace 💌 🌒 Ecotracer 💌 🛃

Flow diagram

The **main trophic flows** among the functional groups are illustrated in the output flow diagram where all groups are organized based on their **TLs** and their **habitat** (pelagic or demersal).

Summary statistics and indicators

Parameter	Thermaikos	Units
Sum of all consumption	1386	t km ⁻² yr ⁻¹
Sum of all exports	514	t km ⁻² yr ⁻¹
Sum of all respiratory flows	417	t km ⁻² yr ⁻¹
Sum of all flows into detritus	868	t km ⁻² yr ⁻¹
Total system throughput	3184	t km ⁻² yr ⁻¹
Sum of all production	1350	t km ⁻² yr ⁻¹
Mean trophic level of the catch	3.314	
Calculated total net primary production	923	t km ⁻² yr ⁻¹
Total primary production / total respiration	2.212	
Net system production	506	t km ⁻² yr ⁻¹
Total primary production / total biomass	23	
Total biomass / total throughput	0.013	
Total biomass (excluding detritus)	40	t km ⁻²
System Omnivory Index	0.2	
Ecopath pedigree index	0.534	

Statistics

		Parameter	Thermaikos	Units
	{	Sum of all consumption	1386	t km ⁻² yr ⁻¹
		Sum of all exports	514	t km ⁻² yr ⁻¹
+		Sum of all respiratory flows	417	t km ⁻² yr ⁻¹
		Sum of all flows into detritus	868	t km ⁻² yr ⁻¹
	=	Total system throughput	3184	t km ⁻² yr ⁻¹

The total system throughput is the sum of all flows in a system.

It is considered to be an indirect indicator of the size of the food web and is estimated as the sum of four flow components, i.e.

Total consumption + Total export + Total respiration + Total flows to detritus

(Export = commercial fishing)

Total system throughput represents the **'size of the entire system in terms of flow'** (Ulanowicz, 1986).

As such, it is an important parameter for comparisons of flow networks.

Statistics

Parameter	Thermaikos	Units
Total primary production / total respiration	2.212	
Net system production	506	t km ⁻² yr ⁻¹
Total primary production / total biomass	23	
Total biomass / total throughput	0.013	

Total primary production / total respiration and biomass: important ratio for description of the **maturity of an ecosystem** (Odum 1971)

In **early developmental stages** of a system, production is expected to exceed respiration, >1 and biomass accumulates over time, production to biomass **declines**

Fishing causes the bottom complexity as well as the benthos and fish species composition to change from mature to disturbed ecosystems (Watling and Norse, 1998)

Net system production: difference between total primary production and respiration, large in immature systems, close to 0 in mature

System biomass / throughput: decrease to a minimum for the most immature stages of a system, close to 0

Mixed Trophic Impact plot

The **relative** direct and indirect **impact** that a hypothetical very **small increase of the biomass** of the impacting groups have on the biomass of the **impacted groups**.

Impacting group

Mixed Trophic Impact plot

ODYSSEA

Impacts due to **fishing**

Mixed Trophic Impact plot

Impacted group

odysseaplatform.eu | @ODYSSEAPlatform

Octopuses & cuttlefish eat a lot of benthic invertebrates

Demersal fishes 1 eat a lot of polychaetes

Small scale vessels **discard** many large pelagics, turtles and dolphins

Most groups have a **negative impact on themselves**, interpreted here as reflecting increased **within-group competition for resources**.

Impacting group

27

Keystone groups >0: play an important role in the food-web with relatively low biomass **Dominant** groups: play an important role and have a relative large biomass in the ecosystem