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A B S T R A C T

We deal with the problem of detecting seagrass presence/absence and distinguishing seagrass families in the
Mediterranean via supervised learning methods. By merging datasets about seagrass presence and other external
environmental variables, we develop suitable training data, enhanced by seagrass absence data algorithmically
produced based on certain hypotheses. Experiments comparing several popular classification algorithms yield up
to 93.4% accuracy in detecting seagrass presence. In a feature strength analysis, the most important variables
determining presence–absence are found to be Chlorophyll-α levels and Distance-to-Coast. For determining fa-
mily, variables cannot be easily singled out; several different variables seem to be of importance, with
Chlorophyll-α surpassing all others. In both problems, tree-based classification algorithms perform better than
others, with Random Forest being the most effective. Hidden preferences reveal that Cymodocea and Posidonia
favor the low, limited-range chlorophyll-α levels (< 0.5mg/m3), Halophila tolerates higher salinities (> 39),
while Ruppia prefers euryhaline conditions (37.5–39).

1. Introduction

Environmental systems can rarely be studied adequately with tra-
ditional statistical analysis. A great part of the information gathered by
environmental scientists often displays non-linearity, unusual distribu-
tions, missing values, and complex interactions between data (De'Ath,
2007; Guisan et al., 2002). Machine learning techniques have the ca-
pacity to discover hidden linear and non-linear patterns in such data-
sets, capturing the spatial and temporal peculiarities of each pattern
(Kanevski et al., 2004).

The study of the impact of marine environmental conditions to the
distribution of biological communities at macroscopic scales (e.g.,
covering the whole Mediterranean basin) could improve our under-
standing on the most critical physico-chemical factors controlling spe-
cies presence-absence. It could also reveal hidden relations to species
diversity and distribution, and the underlying community structures
existing at particular habitats, serving as a guide to assess climate
change effects. Wiley et al. (2003) modeled the hidden relations be-
tween marine environmental variables and eighteen marine fish species
using a machine learning algorithm (Genetic Algorithm). Tittensor et al.
(2009) applied maximum entropy modelling and environmental niche
factor analysis methods to identify the environmental conditions fa-
voring the global distribution of deep-sea habitats for stony corals. Si-
milarly, Bentlage et al. (2009) employed the Genetic Algorithm for Rule

Set Prediction (GARP) and a maximum entropy approach to describe
the presence-only of chirodropid box-jellyfishes by combining their
biogeographic distribution with remotely-sensed environmental data-
sets.

Seagrass beds are considered as highly productive ecosystems
strongly related to nutrients biogeochemical cycling, carbon seques-
tration and food-web structure (Govers et al., 2014). Seagrass meadows
serve as nursery grounds supporting coastal fisheries, filtering nutrients
and entrapping sediments. The ecological modelling of seagrass dis-
tribution is particularly important for ecologists as seagrass species
serve as valuable bio-indicators for aquatic ecosystem health assess-
ment. For example, Halophila minor and Halophila ovalis act as bio-in-
dicator for trace metals pollution and accumulation (Ahmad et al.,
2015); Zostera marina leaf nitrogen to leaf mass ratio has been found to
act as a consistent eutrophication indicator (Lee et al., 2004); Cystoseira
amentacea and Cystoseira mediterranea have also been used as negative
sentinel species for pollution (Ferrat et al., 2003), while many authors
have noted a regression of Posidonia oceanica meadows according to the
degree of human impact.

Several research papers have been published recently employing
machine learning (ML) to marine environmental data. Some studies
about marine ecosystems include the pioneering work of De'ath and
Fabricius (2000) using classification and regression trees to analyze
complex ecological data, leading to patterns between habitat types and
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environmental variables; the application of ML to derive sponge species
richness based on environmental predictors (Li et al., 2017); the ap-
plication of regression-based ML for short-term prediction of phyto-
plankton concentration in Adriatic Sea (Volf et al., 2011); the im-
plementation of Bayesian network models to describe the non-linear
relationships of chlorophyll-α dynamics to environmental changes
Alameddine et al., 2011); the employment of ML techniques to predict
fish species richness, biomass, and diversity from a range of habitat
variables (Knudby et al., 2010); and the development of ANNs to derive
the impact of each environmental variable to the diversity indices of
marine nematodes (Merckx et al., 2009).

A very important component of machine learning is model selection
(also known as feature selection) and is mandatory in order to reach the
best model from other alternative ones. Arthur et al. (2010); Li and
Heap (2011) suggest that model selection is important for the popular
random forest algorithm and thus, researchers have to focus to the most
important variables.

An extensive work on seagrass distribution along the Mediterranean
coast was conducted by Giannoulaki et al. (2013). A great number of
morphodynamic, environmental and human impact variables were
used to predict the presence–absence of P. oceanica seagrass species.
Comparative tests were performed between the ML results when using
the random forest and the maximum entropy algorithms. However,
their dataset in terms of presence–absence seemed unbalanced (87.5%
of total records signified Posidonia absence). Because of that, they
modified the natural threshold of 0.5 that discriminates pre-
sence–absence incidents using the ROC optimization curve.

In this paper, we employ machine learning (ML) techniques to ex-
amine the presence–absence of seagrass meadows in the Mediterranean
Sea, and the environmental relationship among seagrasses at family
level. To achieve these, we combine data from a broad and diverse
range of databases, such as EMODnet, UNEP, and CMEMS, aiming to
determine the most appropriate variables affecting the distribution of
seagrasses. We used static and temporal variables and chose the most
important ones with variable importance method by the random forest
algorithm. The temporal variables have additional features such as the
values for each month, along with the year min, max and average for
surface and seabed, totaling 217 variables. In order to perform binary
classification we propose a method to automatically generate an ab-
sence dataset based on the presence dataset. For both binary and multi-
class classification, 7 different classifiers are compared and their results
are discussed.

The rest of this paper is organized as follows. In Section 2 we de-
scribe the datasets and variables that were used, as well as the absence
dataset that we created. Section 3 briefly presents the machine learning
algorithms, model selection technique, and evaluation measures em-
ployed. In Section 4 we conduct our experimental work for binary and
multi-class classification, and in Section 5 we discuss the results. Fi-
nally, Section 6 summarizes our conclusions and gives directions for
future work.

2. Materials and methods

2.1. Study site description

The Mediterranean Sea is a mid-latitude, predominantly oligo-
trophic to ultra-oligotrophic basin considered as the larger semi-en-
closed sea on Earth. It is a sea almost completely enclosed by land,
north of Africa and south of Europe, with limited connectivity with the
Atlantic Ocean, through the narrow Strait of Gibraltar, the man-made
connection with the Red Sea via the Suez Canal, and the smaller semi-
enclosed Black Sea through the narrow Bosporus Strait. It expands from
−17.29° to 36.29° in longitude and from 30.18° to 45.97° in latitude
and has a surface of approximately 2,510,000 km2. It is divided into two
basins, the eastern and the western, with a boundary the Strait of Sicily.
In this paper we focus on seagrass distribution, therefore at the coastal

to continental shelf strip (0–200m depth).

2.2. Dataset and variables

To understand the environmental, morphodynamic and morpholo-
gical variables, and patterns governing the seagrass presence–absence
and their distribution at family level, we combined data from a broad
range of Mediterranean databases. The UNEP-WCMC global biodi-
versity standardized database (Weatherdon et al., 2015) was used in
this study, focusing on the seagrasses of the biogenic habitat category.1

The database comprises of a geo-referenced shapefile (WCMC-013-014)
consisting of polygons and points, illustrating the global distribution of
seagrass at species level, from which only the Mediterranean Sea re-
cords were retained as a subset (Fig. 1). This shapefile was imported
into a Geographic Information System (QGIS). Based on this data, it
occurs that seagrass covers most parts of the Mediterranean basin,
distributed along the coast of Spain, France, Italy, Tunisia, Greece and
Cyprus.

For each point in the dataset, a seagrass species and a seagrass fa-
mily are reported. Seventeen points were unspecified; these records
were removed from the dataset. As some species had limited re-
presentation in the dataset (less than 10 records), seagrass species were
aggregated into the main seagrass families, as presented in Table 1.

Of all records of the UNEP-WCMC database for the Mediterranean
Sea, Zosteraceae (mostly Zostera noltii) and Cymodoceaceae (mostly
Cymodocea nodosa) are the most common and widespread seagrasses
along Mediterranean coasts. Following Table 1, Cymodoceaceae is the
dominant seagrass family in the Mediterranean Sea. It is a warm water
species that prefers the climate of the Mediterranean. For instance, it
does not extend further north than the southern coast of Portugal.
Cymodoceaceae is capable of living in a range of bathymetry, from
shallow waters to depths such as 60m. P. oceanica is also present along
most parts of the Western Mediterranean coasts. It is a good biomarker
that signals clear waters and it can live up to 50m. Zosteraceae occurs
in almost 10% of the dataset and is a species that is mostly found as
small isolated stands, especially in lagoons. It is encountered mostly in
the Adriatic Sea, the Tyrrhenian Sea, and Sicily, and lives up to 15m
depth. Another warm water species is Halophila, a Red Sea species,
which is ‘invading’ the Mediterranean Sea since the opening of the Suez
Channel. It is mostly found in Cyprus, Greece, Italy, and northern
Africa. Finally, Ruppia has the lowest occurrence in the dataset. It is
found in the Aegean Sea, the Ionian Sea, the western part of Sicily, and
the Adriatic Sea. These species can be extremely morphologically
variable and therefore their identification is often linked to differences
in environmental conditions. They are also very euryhaline and can
withstand prolonged periods of desiccation.

Selecting the most appropriate environmental variables is con-
sidered as an important task in determining the distribution of seagrass
taxa under study (Guisan and Zimmermann, 2000). The modelling
procedure followed here involved the selection of environmental
parameters based on their potential importance in driving seagrass
distributions (determined through a literature review and expert opi-
nion). Table 2 summarizes these variables and their attribute type.
Environmental variables (predictors) are divided into static (de-
termining the morphologic, morphodynamic and human impact, con-
sidered constant over time) and temporal (environmental parameters
exhibiting strong temporal change).

The nature of seabed substrate is an important parameter affecting
the distribution of seagrass. Although seagrasses inhabit all types of
substrates, from mud to rock, the most extensive seagrass beds occur on
soft substrates, like sand and mud. The seabed substrate data were re-
trieved from EMODnet Geology database (EMODnet Consortium et al.,
2016) at 1:100,000 scale and contained 12 different substrate types.

1 http://wcmc.io/seagrass
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These are coarse and mixed sediment, coarse sediment, fine mud, mixed
sediment, mud to muddy sand, muddy sand, rock or other hard sub-
strate, sand, sandy mud, sandy mud to muddy sand, and seabed.

Bathymetry is another important parameter linked indirectly to
light availability, thus determining the seagrass population structure,
the biomass partitioning, and the photosynthetic and respiration rates
(Olesen et al., 2002). Bathymetric data at the points/polygons that
seagrass exist were retrieved from EMODnet database based on digital
elevation models (DTMs) and bathymetric surveys at resolution of 1/
8× 1/8 arc minutes.

As seagrasses are sensitive to human impact, distances of each
seagrass point/polygon to the nearest coast, port, city were computed
using the haversine distance.

Two datasets for cities were tested: the first consists of all major
cities (∼4000 cities) that were retrieved from (Desktop, 2011). The
cities include national capitals, provincial capitals, major population
centers, and landmark cities. The second consists of all communities2

(∼3,800,000 communities).
Apart of light, nutrients also represent energy and matter input to

stimulate seagrass growth and total annual production (Elkalay et al.,
2003). The distance of seagrass presence points/polygons to the nearest
river mouth, as sources of nutrients and suspended matter, were com-
puted using the same strategy with two datasets (Desktop, 2011; Lehner
et al., 2006). Finally, one dataset3 was used to extract the distance from
the nearest port and one (Wessel and Smith, 2013) for the distance to
coast. When calculating distance to coast, some points were found in
land and their distance was set to zero.

Temporal environmental variables included all state variables con-
sidered as drivers for seagrass growth, biomass, and distribution, by
existing numerical models, such as water temperature, salinity, nitrate
and phosphate, chlorophyll-α, significant wave height, and water
column transparency (expressed as Secchi Disk Depth). Mean-monthly
data for these parameters were extracted from the Copernicus Marine
Environmental Service (CMEMS) database (ECJRC, 2018). In Fig. 2, the
distribution of four such variables can be seen. Temperature, salinity,
and nutrient monthly-mean data were extracted from the surface and
bottom of the water column and were imported into our database.
Surface chlorophyll-α data were based on remote sensing observations
transformed into L4 (MEDSEA_REANALYSIS_PHYS_006_004) datasets at
1 km×1 km resolution. In absence of satellite data, modeled data were
used with a resolution of 0.063°× 0.063°. Surface and bottom tem-
perature, salinity and nutrient data, as well as chlorophyll-α bottom
values were extracted from the MedSea Physics Reanalysis dataset, with
a horizontal resolution of 0.063°× 0.063°. The mean-monthly values of
significant wave height at sea surface were extracted from the Medi-
terranean Sea wave model hindcasts available at a resolution of
0.042°× 0.042° (See Table 3).

For the temporal variables we derived 1 value for each month of the
year, the average for each season of the year, the average for the year,
and the maximum and minimum values that were reported for the year,
totaling 19 variables. In the cases were 2 layers were used, variables are
doubled to 38. Static variables have only one fixed value. The total
number of variables that we collected are 217.

When pre-processing the data, substrate was the only categorical
variable, and in order for all machine learning algorithms to work, one-
hot encoding was used, where a new binary variable is added for each
unique categorical value. Also, we wanted to extract the values for the
bottom of the sea, where the seagrass meadows live, and check their
relative importance compared to the surface values. In this respect, a
Python script was developed reading each netCDF pixel and returning
the bottom value of the relevant Copernicus variables.

One difficulty that we faced was that our dataset had many coastal
observations that were not covered by the Copernicus and EMODNet

Fig. 1. Seagrass distribution accross the Mediterranean Sea.

Table 1
Seagrass families in the dataset.

Seagrass family Instances Percentage

Zosteraceae 187 10.56%
Ruppiaceae 28 1.58%
Halophila 94 5.30%
Cymodoceaceae 1337 75.49%
Posidoniaceae 125 7.07%

Table 2
Variables used.

Name Type Layers Variables

Bathymetry Static – 1
Temperature Temporal 2 (surface, bottom) 38
Salinity Temporal 2 (surface, bottom) 38
Chlorophyll-α Temporal 1 (surface) 19
Nitrate Temporal 2 (surface, bottom) 38
Phosphate Temporal 2 (surface, bottom) 38
Secchi Disk Depth Temporal 1 (surface) 19
Wave Height Temporal 1 (surface) 19
Distance from nearest City Static – 2
Distance from nearest River Mouth Static – 2
Distance from nearest Port Static – 1
Distance to Coast Static – 1
Substrate Static – 1

2 https://www.maxmind.com/en/free-world-cities-database

3 https://msi.nga.mil/NGAPortal/MSI.portal?_nfpb=true
_pageLabel=msi_portal_page_62 pubCode=0015
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Fig. 2. Temperature, Salinity, Chlorophyll-α and Secchi Depth distribution across Mediterranean Sea. Monthly mean values for December.
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spatial resolution, resulting to many points seemingly ‘falling’ on land.
This problem can be seen in Fig. 3 for Sicily.

For all temporal variables and bathymetry, only a few points of our
seagrass dataset were present in the external sources. Table 4 displays
these statistics. In order to handle this problem, a script was written
that calculates the haversine distance between a point with no value
and all the nearby points. It finds the value of the closest point with a
value and copies it. So, at this point we have all the values for surface
and bottom without any missing values.

2.3. Absence dataset

In order to be able to predict the seagrass presence–absence pattern
at an unknown point along the Mediterranean coast, an absence dataset
was created. As there is no publicly available absence seagrass dataset,
a set of artificial absence records was developed based on certain rules
and hypotheses.

With a high probability, we claim that cells next to our initial sea-
grass presence dataset are in lack of seagrass. We suppose that when
observations were made in order to detect seagrass, all adjacent areas
were examined, and where no seagrass was found, it was not included
in the dataset. If seagrass was found, then it would be available in the
dataset.

Based on the above assumption, a Python code was developed fol-
lowing a set of well-defined rules to generate points considered ex-
hibiting an absence in seagrass. We used 2 files: the first is the seagrass
dataset and the second is the data of any temporal environmental
variable obtained from CMEMS. As CMEMS data are gridded, en-
vironmental data were assigned at the center point of each CMEMS
pixel. For each point of the initial seagrass dataset, we search for the
closest point of the shapefile that we just created that has not already
found to be absent of seagrass by a previous point. There is also a re-
striction that forbids a point to be selected if its distance from the
closest shore is longer than the fixed value of 10 km. So, if many sea-
grass presence points are close to each other, there is a chance that
there will be generated less absence points than these.

The above methodology tends to follow the coast. A total of 1284
absence points were artificially generated, and our total dataset now
consists of 3055 entries. In Fig. 4, the final presence–absence seagrass
dataset is depicted, along with an in-depth inspection around Sicily
Island. In Section 4.1.1 we will provide a rough estimate on how our
experiments are affected by the artificiality of our absence data.

3. Data analysis and machine learning

In this section we investigate several ways to determine the im-
portance of the features selected for classification. We briefly present
the classification algorithms that were used for our experiments, as well
as the evaluation measures.

3.1. Variable importance

By determining which variables are most important we can simplify
the analysis of a dataset, better understand the physical concepts of it,
and exclude the ones that confuse the model achieving better accuracy
and learning/testing speed.

There exist several ways to determine variable importance, e.g.
Decision Trees, Random Forests, Chi-square, and Regression. We deal
with tree-based variable importance, like (Arthur et al., 2010) did. It

Table 3
CMEMS datasets used to device the seagrass ML database.

Parameter CMEMS product Resolution

Water Temperature MEDSEA_REANALYSIS_PHYS_006_004 0.063°× 0.063
Salinity MEDSEA_REANALYSIS_PHYS_006_004 0.063°× 0.063
Nutrients MEDSEA_REANALYSIS_BIO_006_008 0.063°× 0.063
Chlorophyll-a MEDSEA_REANALYSIS_BIO_006_008 0.063°× 0.063
Secchi Disk depth OCEANCOLOUR_GLO_OPTICS_L4_REP_OBSERVATIONS_009_081 1 km×1 km
Significant wave height MEDSEA_HINDCAST_WAV_006_012 0.042°× 0.042

Fig. 3. Coastal points problem in Sicily.

Table 4
Number of variables that existed for the initial dataset.

Name Number of values Percentage

Bathymetry 1116 63.01%
Temperature 598 33.76%
Salinity 598 33.76%
Chlorophyll-α 582 32.86%
Nitrate 597 33.71%
Phosphate 597 33.71%
Secchi Disk Depth 1357 76.62%
Wave Height 825 46.58%
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attempts to determine how to split the data into smaller, more homo-
geneous buckets, accessing one variable at a time. When the most im-
portant variable is found, it is placed at the top of the tree. However,
Decision Trees have some drawbacks. While real world data may not be
linear, trees are designed to look at linear separations. Also, a Decision
Tree is not able to get past biased data. So, instead of making one tree
model, it is best practice to make multiple, e.g. by using Random Forest,
which combines many Decision Trees. Now, each model built is looking
at a different subset of data and is not always using the same variables.

When we determine the best features, we have to choose which ones
to exclude from our final model in order to improve performance. One
feature selection method that deals with this need is called Recursive
Feature Elimination and is used by Li et al. (2013). Given an external
estimator that appoints weights to features, recursive feature elimina-
tion aims to choose features by recursively considering fewer and fewer
arrangements of features. To start with, the estimator is trained on the
underlying arrangement of features and the significance of each feature
is acquired through some property. At that point, the less critical fea-
tures are pruned from the current arrangement of features. This method
is recursively rehashed on the pruned set until the coveted number of
features to choose is reached.

There is not a perfect feature selection method that works in every
case. Researchers have to test them and apply the best depending on
their dataset. For our work we found tree-based variable importance to
work better, and especially when using the highest performing tree
algorithm (Random Forest) to determine the best features.

3.2. Machine learning algorithms

There exist many supervised machine learning algorithms in lit-
erature, distinguished into several categories, such as Generalized
Linear Models (GLM), Decision Trees (DT), Instance Based (IB), Support

Vector Machines (SVM), and others. Seven well-known algorithms from
these categories like Passive-Aggressive, Logistic Regression, Ridge,
Linear SVC, k-Nearest Neighbors, Decision Tree, and Random Forest
were used in this study.

3.2.1. Passive-aggressive
The Passive-Aggressive algorithm belongs to a family of algorithms

for large-scale learning. As the name states, this algorithm is passive,
meaning that it keeps the model if the classification was correct, and
aggressive, meaning that it updates to adjust the misclassified example
if the classification was incorrect.

3.2.2. Logistic regression
It is a popular algorithm that belongs to the Generalized Linear

Models methods—despite its name—and it is also known as Maximum
Entropy. In this model, the probabilities describing the possible out-
comes of a single trial are modeled using a logistic function.

3.2.3. Ridge
Ridge (Hoerl and Kennard, 1970) is a classical data modelling

method to solve the multicollinearity problem of covariates in samples.
It belongs to the Generalized Linear Models, like Linear Regression, but
addresses some of the problems of Ordinary Least Squares by imposing
a penalty on the size of coefficients. It has a complexity parameter α
that controls the amount of shrinkage: the larger the value of α, the
greater the amount of shrinkage and thus the coefficients become more
robust to collinearity (Pedregosa et al., 2011).

3.2.4. Linear SVC
One of the most popular machine learning methods for classification

of linear problems are Support Vector Machines (SVMs) (Cherkassky,
1997) with a linear kernel. They try to find a set of hyperplanes that

Fig. 4. Presence (green) and absence (red) points of seagrass in Mediterranean (above) and Sicily (below).
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separate the space into areas representing classes. These hyperplanes
are chosen in a way which maximizes the distance from the nearest data
point of each class. The Linear SVC is the simplest and fastest SVM
algorithm assuming a linear separation between classes.

3.2.5. K-nearest neighbors
It is an non-parametric ‘lazy’ learning algorithm. This means that it

does not make any assumptions on the underlying data distribution and
that it does not use the training data points to do any generalization. It
does not attempt to construct a general internal model, but simply
stores instances of the training data. Classification is computed from a
simple majority vote of the nearest neighbors of each point: a query
point is assigned the data class which has the most representatives
within the nearest neighbors of the point.

3.2.6. Decision tree
The Decision Tree Classifier is a simple and widely used classifica-

tion technique. It applies a straightforward idea to solve the classifi-
cation problem by posing a series of carefully crafted questions about
the attributes of the test record. Each time it receives an answer, a
follow-up question is asked until a conclusion about the class label of
the record is reached.

Random Forest. A Random Forest is an ensemble strategy that joins
numerous individual classification trees in the accompanying route:
from the first example, numerous bootstrap tests and segments of in-
dicators are drawn, and an unpruned classification tree is fitted to each
bootstrap test utilizing the inspected indicators. From the complete
forest, the status of the response variable is typically anticipated as the
prediction of the forecasts of all trees as the class with majority vote for
classification (Breiman, 2001).

3.3. Evaluation measures

A measure commonly used to evaluate classification results is
Accuracy, which is the ratio of correct to all classification decisions.
Accuracy is a good metric for balanced datasets, like the case studied
here for seagrass presence–absence, and is defined as:

=
+

+ + +

Accuracy TP TN
TP TN FN FP

,
(1)

where TP is the number of true (correct) positive (presence) predic-
tions, TN is the number of correct negative (absence) predictions, FP is
the number of false positive predictions and FN is the number of false
negative predictions.

Other metrics used are Precision, Recall, and the F-measure.
Precision is defined as the fraction of relevant/correct instances among
the retrieved instances for a class, while Recall is the fraction of re-
levant instances that have been retrieved over the total amount of

relevant instances. In terms of the same counts used above, they can be
expressed as:

=

+

=

+

Precision TP
TP FP

, Recall TP
TP FN

.
(2)

The F-measure score is the harmonic mean of Precision and Recall:

=
× ×

+

F 2 Precision Recall
Precision Recall

.
(3)

Typically, the input dataset is split into two disjoint subsets, the
training and the testing set. The training set is used to learn the model,
while the test set is used to measure a performance measure. But how
confident can we be about the classification performance? The results
may be due to accidental characteristics of the specific partitioning. For
example, the test set may happen to include points that are easy to be
categorized, with the result that the categorizer yields good perfor-
mance. Consequently, the choice of a fixed, predefined partitioning of
the dataset may not be the best way for evaluating classifiers.

Cross-validation is an iterative method for calculating the expected
value of a particular measure. It splits the dataset into K equally-sized
parts that are called folds. In each iteration, different (K− 1)-folds are
used for training and the remaining fold for testing. The overall mea-
sure of its performance is the average of the measures of the individual
iterations. The above method guarantees that every instance will be
used both for training and testing. There is an alternative of cross-va-
lidation method called stratified cross-validation, where in each fold a
balanced number of instances for each class is selected. For our ex-
perimentation, we used stratified cross-validation with K=10 folds.

4. Experiments

In this section, we perform two experiments. First, we are trying to
predict the existence of seagrass, and then its family. We are also in-
terested on which variables affecting those predictions most.

4.1. Detecting seagrass

First, we try to solve the following problem: ‘Given an unknown
point, does it have seagrass or not?’ This can be seen as a binary clas-
sification problem. Before building a classifier, the relative importance
of environmental predictors will be determined, using the Random
Forest algorithm.

In Fig. 5, we report the relative importance for each predictor of
Table 2. For temporal predictors, only the first appearance of the most
important month affecting seagrass is displayed. Predictors' importance
results indicated that eight out of the top-10 features were the different
chlorophyll-α mean-monthly levels. Thus, we conclude that chlor-
ophyll-α is very important parameter in determining the

Fig. 5. Relative importance of variables for seagrass absence-presence classification. For temporal variables (e.g. Chlorophyll-α), only their best first period (e.g.
month) is displayed.
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presence–absence of seagrass in the Mediterranean Sea. Apart from
chlorophyll-α, the distance to coast seems to be a strong indicator of
seagrass, as well as bathymetry (indirectly related to distance to coast),
while all other predictors seemed less important. Another finding is that
for most dynamic, temporally-changing variables during the winter
months are more important. Chl-α winter data exhibited higher values
(mean: 0.32 ± 0.20mg m−3) compared to the other seasons, at the
areas with seagrass presence. December was the month with mean Chl-
α concentration (0.37 ± 0.53mg m−3) at these areas. On the contrary,
in points of seagrass absence Chl-α concentration peaked in spring
(mean: 0.26 ± 0.35mg m−3) with highest values in February and
March (> 0.30mg m−3). Finally, the conditions prevailing at the
seabed (e.g., substrate type, bottom temperature, salinity, nutrients,
etc.) appear to be of lesser significance, as the surface measurements are
higher in rank.

Proceeding further to understand better the behavior of predictors,
the box plots of the best two variables are displayed in Figs. 6–7. On the
left-hand-side of each class, the value of each point is presented, while
on the right some statistics like the upper fence (Q3), the median and
the lower fence (Q1) are shown. Points outside the lower–upper fence
margins are considered as outliers. It can be seen that higher values of
chlorophyll-α are essential for the growth of seagrasses. Furthermore,
from the highly important ‘distance-to-coast’ predictor, it is clear that
seagrass is present at close distances to the coast. While distance-to-
coast may be positively correlated to bathymetry, the latter is found to
be less than half as important in the variable strength analysis.

In a further step, all machine learning algorithms were trained and
tested using the stratified cross-validation technique and the evaluation
measures were computed (Table 5). Having a rather balanced dataset

(in terms of comparative presence–absence item counts), Accuracy is a
suitable measure for model performance evaluation. Nevertheless, all
applied algorithms are ranked based on the F-measure (from worst to
best), for reasons to be explained in Section 4.1.1 below.

Overall, Generalized Linear Models (GLMs), such as Passive-
Agressive, Logistic Regression, and Ridge, perform poorly on seagrass
presence–absence detection. Linear SVC models produce modest results
compared to the strong tree-based models. These findings suggest that
the relationship between seagrass presence–absence and environmental
variables is non-linear. Tree-based algorithms can deal with that pro-
blem better, resulting in F-measure and Accuracy exceeding 90%. Note
also that Accuracy gives almost the same ranking of ML algorithms,
with the exception of kNN which is evaluated higher in Accuracy
(better than most linear ones) but lower in F-measure (i.e. bad even
among the linear ones). This seems to be due to ‘sacrificing’ too much
Recall for Precision.

Fig. 6. Distribution of Chlorophyll-α-December values per presence–absence class.

Fig. 7. Distribution of Distance-to-Coast values per presence–absence class.

Table 5
Binary classification effectiveness, per classifier, using all variables.

Classifier Accuracy Precision Recall F-measure

Passive-Aggressive 59.4 45.4 66.6 53.8
k-Nearest Neighbors 68.5 73.3 71.4 72.1
Logistic Regression 61.2 61.9 98.7 75.2
Ridge 61.2 61.6 98.8 75.2
Linear SVC 75.4 76.6 88.5 80.5
Decision Tree 92.5 95.7 91.0 93.2
Random Forest 93.4 98.1 90.4 93.8
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4.1.1. Estimating uncertainty
Since the absence part of our dataset is generated artificially with

the method described in Section 2.3, it may contain errors introducing
uncertainty in the absolute numbers of the evaluation measures. Let us
do a rough estimation of how large this uncertainty may be.

Our main hypothesis for selecting absence datapoints in Section 2.3
has been that cells next to our presence ones are in lack of seagrass. But
what if some of the cells that we marked as absence are in reality
presence? Consider a confusion matrix with TP/FP/FN/TN displaying
the actual presence/absence observations and the ones that our binary
classifiers predicted as presence/absence. The real absence data are
split by our classifiers into FP and TN categories. Assuming that our
method for generating absence data makes errors in the magnitude of
5% which are split equally (percentage-wise) in FP and TN, then the
real values of the evaluation measures can be calculated by moving 5%
of the FP and TN counts to TP and FN, respectively, since those are
presence data in reality. Taking a specific confusion matrix from one of
the folds of the Random Forest run with Accuracy/Precision/Recall/F-
measure of 85.9/79.3/89.8/84.2, modifying the counts as described
above results to measure numbers of 84.3/80.7/85.4/83.0. Obviously,
due to the artificiality of our absence data, we overestimate (mos-
tly—Precision is underestimated) effectiveness by 1.9/−1.8/5.2/1.4
(% changes from real to estimated measures). If we assume 20% errors,
the latter differences become 10/−7/21/6.2.

Thus, the least affected measure is the F-measure, that is why we
used it as the main measure in this experiment for ranking the ML al-
gorithms. Furthermore, its uncertainty seems small, even for the 20%
errors case, which suggests that our ranking of algorithms would be the
same with real, error-free absence data. Consequently, our conclusions
are not affected, although the absolute effectiveness numbers may be
different with error-free data.

In retrospect, the situation may be even better, since we now also
train with possibly erroneous data, negatively impacting our classifiers.
So, maybe overestimating the measures cancels out this impact a bit.
The procedure for estimating uncertainty described in this section,
could be generalized, but this is beyond the scope of this paper; a rough
estimate/indication is sufficient for our purpose at this point.

4.2. Detecting seagrass family

Another problem we try to solve is: ‘If a seagrass exists, which fa-
mily is it?’ This, based on our dataset, is defined as a one-of multi-class
classification problem. Note that all experiments in this section do not
involve any artificially-generated data, so the absolute numbers of the
evaluation measures are not affected. As before, we firstly investigate
the variable importance using Random Forest.

Out of the top-10 features, 5 different chlorophyll-α months were
again present. So, chlorophyll-α levels are also important for seagrass

family classification. Fig. 8 shows the relative importance of the best
first occurrence of the variables of Table 2. In contrast to pre-
sence–absence classification, here there are not a few variables with
higher importance than others, but many of them present a relative
high importance. The less important is Distance-to-Port, with a strength
of around 1/3. This means that there are a lot of different factors that
play a key role when determining which seagrass family exists out of
the 5 choices.

Figs. 9–10 present the distribution of the two most important vari-
ables per seagrass family. For chlorophyll-α, the mean value for each
seagrass family varies. This means that each family prefers specific and
different values of chlorophyll-α. For Cymodocea and Posidonia, chlor-
ophyll-α ranges in a specific range of values, while for the other families
this is more spread. For salinity, the mean values also differ among
seagrass families, with Zostera preferring lower values and Halophila
higher. The interquanitile ranges also vary, with Halophila exhbiting
more ‘tight’ distribution, while Posidonia, Cymodocea and Ruppia appear
more spread (See Table 6).

The final step is to train and test the machine learning algorithms in
this dataset for 5-class classification. Stratified cross-validation was
used, and evaluated with Precision, Recall and F-measure. This dataset
is not balanced as can be seen in Table 1. Cymodocea is the dominant
class that constitutes the 75% of the dataset. Thus, Accuracy may not be
a suitable measure, because it measures how many correct predictions
were made overall, and if we predict all the test examples as cymo-
docea, then Accuracy would be close to 75% without even predicting
another class. This is clearly a problem because many machine learning
algorithms are designed to maximize overall Accuracy, with the ex-
ception of the tree-based algorithms. So, we resort to the F-measure; the
algorithms are ranked based on it.

When computing the total F-measure, we use the macro-average.
Macro-averaging takes the average of all individual class F-measures,
treating small and large classes equally, in contrast to micro-averaging
which aggregates the TP/TN/FP/FN counts from all classes and com-
putes a total measure which is biased to the large classes.

We also experimented with using subsets of best features from top-
50% down to top-5% with a step of 5%, and the effectiveness max-
imized at using top-10% of features. When all features are used, the best
performing classifiers are the tree-based Decision Tree and Random
Forest. For the top-10% of the features, which were calculated using
variable importance with Random Forest, all algorithms except the tree-
based ones give lower results. However, the best F-measure score (37.1
of Decision Tree) has been improved by 2.6% in comparison with the
all-features experiment and is now achieved by Random Forest with
39.7%.

Fig. 8. Relative importance of variables for seagrass family classification. For temporal variables (e.g. Chlorophyll-α), only their best first period (e.g. month) is
displayed.
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5. Discussion

Although not entirely understood, it is presently evident that water
column quality affects the abundance of seagrass and in many occasions
controls the gradual replacement of certain plant species by opportu-
nistic seagrasses capable to adapt under poor ecological conditions.
However, the exact processes and dynamics of these changes have not
been extensively documented, mostly due to the slow nature of en-
vironmental degradation, the even more gradual ecological response of
seagrass communities, the non-linearities hidden in marine ecosystem
dynamics and the lack of widely-spread systematic environmental da-
tasets (Boudouresque et al., 2009). The relative impacts of

environmental drivers, expressed as water temperature, salinity, nu-
trients, transparency; ecosystem components, as bathymetry and
bottom substrate; and the human influence, described by the distance to
cities, ports and river outflows have not been previously reported. In
this work we attempt to explore the nonlinear dynamics among the
environment-ecosystem-human gradient and their impact on seagrass
presence and distribution in the Mediterranean Sea. To achieve this, we
utilized the power of machine learning algorithms when applied to
large and diverse datasets maintained by international organizations, as
Copernicus, EMODnet and UNEP. The importance of such work, and
others of similar context could be vital, as there is a real need for un-
derstanding better coastal benthic processes and human interaction,
especially for the Mediterranean Sea, where seagrass loss correlates
with the rapid shoreline urbanization and remedial and restoration
projects should be undertaken (Green, 2003).

Our results suggest that the main natural parameters affecting the
distribution of seagrass at family and genera level are the winter
(mainly December) chlorophyll-α and salinity levels, the autumn
phosphate concentrations and bathymetry, expressing changes in tem-
perature, pressure and light availability. The human impact, expressed
as the distance from all coastal communities along the Mediterranean
shoreline also determines seagrass classification (Fig. 8). Previous
publications support these findings e.g., (Danovaro, 1996; Danovaro
and Fabiano, 1995; Olesen et al., 2002), although the relative im-
portance of the above-described factors on seagrass benthic distribution
was unknown. This is the strength of data mining and machine learning
techniques applied at these large databases, although since results are
mostly data-driven, our conclusions could be altered in case a more

Fig. 9. Distribution of Chlorophyll-α-December values per seagrass family.

Fig. 10. Distribution of Salinity-December values per seagrass family.

Table 6
Effectiveness (%) of family classification.

Classifier All features Top-10% features

Precision Recall F-measure Precision Recall F-measure

Linear SVC 21.7 30.3 22.4 23.2 24.9 20.2
Logistic

Regression
36.6 27.1 26.4 29.3 21.8 21.3

Ridge 33.5 25.6 25.9 31.6 22.2 22.0
Passive-

Aggressive
24.1 25.2 22.2 35.0 26.4 25.5

k-Nearest
Neighbors

46.8 35.0 35.9 43.5 31.1 32.5

Decision Tree 40.3 42.0 37.1 41.3 42.3 38.9
Random Forest 41.3 38.2 36.6 44.4 41.4 39.7
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explicit or expanded database is being used.
Using machine learning algorithms it was revealed that areas with

relatively higher winter Chl-α content favor the presence and devel-
opment of seagrass. On the other hand, areas with absent seagrass
species, in the vicinity of these meadows, exhibited higher spring Chl-α
concentrations, associated to water column eutrophic incidents. The
impact of water column deterioration due to spring eutrophication in-
cidents and subsequent light deprivation and bottom anoxia on seabed
habitat richness and diversity is eminent and has been reported by
many investigators in the past (Bite et al., 2007; Martins et al., 2001).
Such conditions may introduce intolerable stress to benthic marine
organisms, loss of seagrass biomass and ultimately to habitat dete-
rioration. For species such as Zostera noltii, frequent spring eu-
trophication episodes may lead to their progressive replacement by
opportunistic macroalgae (Cardoso et al., 2004).

In parallel, the impact of seawater salinity on seagrass distribution,
although well-known (Castriota et al., 2001; Fernández-Torquemada
and Sánchez-Lizaso, 2005; Gacia et al., 2007), explicit tolerance levels
have never been defined. Our results suggest that in the Mediterranean
Sea, winter salinity is the second most important parameter to differ-
entiate the distribution of seagrass species. Halophila appears to survive
at the most saline environments, within a narrow yearly-averaged
salinity range from 39 to 39.3 psu (Fig. 11), characterizing mostly the
eastern basin and especially along the northern Africa coastline, Cyprus
and the southern parts of Italy and Greece. Posidonia oceanica and
Cymodocea nodosa appear favoring lower, almost similar winter salinity
levels, ranging between 37.3 and 39.3 psu. This range lies within the
preference level reported by other investigators (Ruíz et al., 2009;
Tomasello et al., 2009), although it is shown that P. oceanica favors
more stable salinity conditions while C. nodosa more euryhaline en-
vironments with presence along estuaries and near river mouths
(Boudouresque et al., 2009). This analysis is consistent to the experi-
mental results of (Sandoval-Gil et al., 2012), showing that C. nodosa
may grow in diverse coastal environments with variable salinity levels,
while P. oceanica is limited to more stable in salinity marine environ-
ments. Furthermore, our analysis reveals that Ruppia exhibits higher
relative tolerance, resisting to marked inter-salinity differences
(37–39.2 psu). The annually-average values for salinity can be seen in
Fig. 11.

Food availability determines seagrass growth, distribution and me-
tabolism, especially as seagrasses can uptake nutrients not only through
roots but also through leaves (Brix and Lyngby, 1985). This is parti-
cularly important as there exists a diverse variety of nutrient sources
along the Mediterranean coastline, providing the appropriate levels to
seagrass sustainability, but regularly exceed carrying capacity levels
leading to eutrophication incidents. Phosphorus compounds, either as
dissolved organic phosphorus (DOP) or particulate organic phosphorus

(POP), can be readily usable through hydrolysis by a number of forms
of the enzyme alkaline phosphatase (Pérez and Romero, 1993) and then
up taken and assimilated by seagrass. Previous uptake studies on sev-
eral seagrass species showed that both leaf and root tissues exhibited
highly variable kinetic parameters at different phosphate levels among
species (Fourqurean et al., 1992; Udy and Dennison, 1997), proving
that species specific responses to nutrient additions occur, supporting
the results of the present study that phosphate levels are important
environmental parameter determining seagrass classification.

Finally, the present study results indicate the seasonality determines
strongly seagrass species distribution. Cardoso et al. (2004) reported
the strong seasonal effect determining the growth of Z. noltii in Montego
estuary, with higher seagrass above-ground-biomass in spring and
summer (due to leaf growth) and the increase in rhizome and roots in
autumn and winter. Seasonality is also related to light intensity, in-
directly linked to water transparency, expressed by Secchi depth
(Fig. 12) showing that Halophila, Cymodocea and Posidonia favor more
transparent water column conditions, while Zostera and Ruppia may
grow under limited light availability. Similar results were also drawn by
Duarte et al. (2007) utilizing data from 424 reports on seagrass species
distribution in relation to light extinction depth.

6. Conclusion and future work

In this work, data from large, systematic and diverse databases were
fused to model the factors determining the presence/absence and fa-
milies' distribution of seagrass in the Mediterranean Sea. Overall, we
may conclude that machine learning algorithms and data fusion tech-
niques may support marine ecological studies providing a better un-
derstanding of hidden, non-linear processes and interrelations to en-
vironmental variables and human impacts. Such models interrelating
environmental variations and human impacts on biological subjects (as
macrophytes) could be used to back up the implementation of the
Marine Strategy Framework and Maritime Spatial Planning Directives
in the Mediterranean.

The main findings of the present work suggest that (1) tree-based
classification algorithms, and especially the random forest exhibits the
best performance on determining seagrass presence/absence and
identification at family level; (2) chlorophyll-α levels in winter months
(mostly in December) is the key parameter determining seagrass pre-
sence/absence and family classification; (3) distance from coast, dis-
tance from river mouths and bathymetric change are key factors de-
terining seagrasss presence; (4) salinity and phosphate levels may also
identify seagrass family preference; (5) Cymodocea and Posidonia are
more abundant at low, limited-range chlorophyll-α levels; (6) Halophila
seems more tolerant at higher salinities, while Ruppia prefers euryha-
line conditions, and (7) Halophila, Cymodocea and Posidonia favor more

Fig. 11. Distribution of Salinity year average values per seagrass family.
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transparent water columns, while Zostera and Ruppia may grow under
limited light and turbid environments. All of the above findings are in-
line to conclusions drawn by previous local/regional studies.

We proposed a methodological framework for the development of
an absence dataset and an uncertainty assessment analysis. As a future
addition to this work, we could add more variables and test their ef-
fectiveness in model selection and classification. Candidate variables
could be biological like primary production and pH, physical such as
sea surface height and currents, and human related activities like
dredging through fishing activity and pollution. Other model selection
methods except variable importance with forest algorithms could fur-
ther be tested, like univariate selection and recursive feature elimina-
tion. Finally, more algorithms could be investigated, such as the pop-
ular neural networks.
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